Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984687545> ?p ?o ?g. }
- W2984687545 abstract "This paper deals with constrained convex problems, where the objective function is smooth strongly convex and the feasible set is given as the intersection of a large number of closed convex (possibly non-polyhedral) sets. In order to deal efficiently with the complicated constraints we consider a dual formulation of this problem. We prove that the corresponding dual function satisfies a quadratic growth property on any sublevel set, provided that the objective function is smooth and strongly convex and the sets verify the Slater's condition. To the best of our knowledge, this work is the first deriving a quadratic growth condition for the dual under these general assumptions. Existing works derive similar quadratic growth conditions under more conservative assumptions, e.g., the sets need to be either polyhedral or compact. Then, for finding the minimum of the dual problem, due to its special composite structure, we propose random (accelerated) coordinate descent algorithms. However, with the existing theory one can prove that such methods converge only sublinearly. Based on our new quadratic growth property derived for the dual, we now show that such methods have faster convergence, that is the dual random (accelerated) coordinate descent algorithms converge linearly. Besides providing a general dual framework for the analysis of randomized coordinate descent schemes, our results resolve an open problem in the literature related to the convergence of Dykstra algorithm on the best feasibility problem for a collection of convex sets. That is, we establish linear convergence rate for the randomized Dykstra algorithm when the convex sets satisfy the Slater's condition and derive also a new accelerated variant for the Dykstra algorithm." @default.
- W2984687545 created "2019-11-22" @default.
- W2984687545 creator A5019114471 @default.
- W2984687545 creator A5064454585 @default.
- W2984687545 date "2019-11-14" @default.
- W2984687545 modified "2023-09-23" @default.
- W2984687545 title "Linear convergence of dual coordinate descent on non-polyhedral convex problems" @default.
- W2984687545 cites W1536329667 @default.
- W2984687545 cites W1947202642 @default.
- W2984687545 cites W1964744380 @default.
- W2984687545 cites W1975552883 @default.
- W2984687545 cites W2003085133 @default.
- W2984687545 cites W2033511209 @default.
- W2984687545 cites W2047043241 @default.
- W2984687545 cites W2073749939 @default.
- W2984687545 cites W2075660001 @default.
- W2984687545 cites W2081633016 @default.
- W2984687545 cites W2095984592 @default.
- W2984687545 cites W2113503719 @default.
- W2984687545 cites W2117686388 @default.
- W2984687545 cites W2131247345 @default.
- W2984687545 cites W2162461247 @default.
- W2984687545 cites W2592062427 @default.
- W2984687545 cites W2734837702 @default.
- W2984687545 cites W2811391283 @default.
- W2984687545 cites W2963026695 @default.
- W2984687545 cites W2963747836 @default.
- W2984687545 cites W2985739199 @default.
- W2984687545 cites W3141595720 @default.
- W2984687545 hasPublicationYear "2019" @default.
- W2984687545 type Work @default.
- W2984687545 sameAs 2984687545 @default.
- W2984687545 citedByCount "2" @default.
- W2984687545 countsByYear W29846875452020 @default.
- W2984687545 crossrefType "posted-content" @default.
- W2984687545 hasAuthorship W2984687545A5019114471 @default.
- W2984687545 hasAuthorship W2984687545A5064454585 @default.
- W2984687545 hasConcept C112680207 @default.
- W2984687545 hasConcept C12108790 @default.
- W2984687545 hasConcept C126255220 @default.
- W2984687545 hasConcept C127162648 @default.
- W2984687545 hasConcept C127413603 @default.
- W2984687545 hasConcept C129844170 @default.
- W2984687545 hasConcept C145446738 @default.
- W2984687545 hasConcept C146978453 @default.
- W2984687545 hasConcept C157553263 @default.
- W2984687545 hasConcept C157972887 @default.
- W2984687545 hasConcept C162324750 @default.
- W2984687545 hasConcept C177067428 @default.
- W2984687545 hasConcept C2524010 @default.
- W2984687545 hasConcept C2777303404 @default.
- W2984687545 hasConcept C28826006 @default.
- W2984687545 hasConcept C31258907 @default.
- W2984687545 hasConcept C33923547 @default.
- W2984687545 hasConcept C41008148 @default.
- W2984687545 hasConcept C49870271 @default.
- W2984687545 hasConcept C50522688 @default.
- W2984687545 hasConcept C57869625 @default.
- W2984687545 hasConcept C64543145 @default.
- W2984687545 hasConceptScore W2984687545C112680207 @default.
- W2984687545 hasConceptScore W2984687545C12108790 @default.
- W2984687545 hasConceptScore W2984687545C126255220 @default.
- W2984687545 hasConceptScore W2984687545C127162648 @default.
- W2984687545 hasConceptScore W2984687545C127413603 @default.
- W2984687545 hasConceptScore W2984687545C129844170 @default.
- W2984687545 hasConceptScore W2984687545C145446738 @default.
- W2984687545 hasConceptScore W2984687545C146978453 @default.
- W2984687545 hasConceptScore W2984687545C157553263 @default.
- W2984687545 hasConceptScore W2984687545C157972887 @default.
- W2984687545 hasConceptScore W2984687545C162324750 @default.
- W2984687545 hasConceptScore W2984687545C177067428 @default.
- W2984687545 hasConceptScore W2984687545C2524010 @default.
- W2984687545 hasConceptScore W2984687545C2777303404 @default.
- W2984687545 hasConceptScore W2984687545C28826006 @default.
- W2984687545 hasConceptScore W2984687545C31258907 @default.
- W2984687545 hasConceptScore W2984687545C33923547 @default.
- W2984687545 hasConceptScore W2984687545C41008148 @default.
- W2984687545 hasConceptScore W2984687545C49870271 @default.
- W2984687545 hasConceptScore W2984687545C50522688 @default.
- W2984687545 hasConceptScore W2984687545C57869625 @default.
- W2984687545 hasConceptScore W2984687545C64543145 @default.
- W2984687545 hasOpenAccess W2984687545 @default.
- W2984687545 hasRelatedWork W1962121538 @default.
- W2984687545 hasRelatedWork W2198183204 @default.
- W2984687545 hasRelatedWork W2272509765 @default.
- W2984687545 hasRelatedWork W2521475172 @default.
- W2984687545 hasRelatedWork W2617755152 @default.
- W2984687545 hasRelatedWork W2893172655 @default.
- W2984687545 hasRelatedWork W2894350555 @default.
- W2984687545 hasRelatedWork W2912802815 @default.
- W2984687545 hasRelatedWork W2949205556 @default.
- W2984687545 hasRelatedWork W2950566306 @default.
- W2984687545 hasRelatedWork W2951926417 @default.
- W2984687545 hasRelatedWork W2963648037 @default.
- W2984687545 hasRelatedWork W2966160890 @default.
- W2984687545 hasRelatedWork W2987616811 @default.
- W2984687545 hasRelatedWork W3005835621 @default.
- W2984687545 hasRelatedWork W3123900661 @default.
- W2984687545 hasRelatedWork W3205964019 @default.
- W2984687545 hasRelatedWork W3213453035 @default.