Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984697050> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2984697050 abstract "Article Figures and data Abstract Introduction Results Discussion Material and methods References Decision letter Author response Article and author information Metrics Abstract Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops. https://doi.org/10.7554/eLife.22195.001 Introduction Loss of heterozygosity (LOH) can be an important contributor to carcinogenesis and a principal mechanism leading to LOH is crossover formation by homologous recombination (HR) (Knudson, 2001; Stern, 1936). HR is a high-fidelity DNA repair pathway for DNA double-strand breaks (DSB) and interstrand cross-links (Heyer et al., 2010). HR is also involved in the recovery of stalled or collapsed replication forks, as well as in the bypass of damage in the DNA template. In general, there are two types of HR repair products, crossovers and non-crossovers, depending on whether the arms of sister chromatids or homologs are exchanged or not, respectively. Crossovers between non-allelic DNA regions lead to chromosomal aberrations including deletions, inversions, and translocations. Non-crossover is the preferred outcome of HR in somatic cells avoiding potential loss of heterozygosity and possible chromosome rearrangements. In contrast, during meiosis HR is designed to generate at least one crossover per homolog to facilitate accurate chromosome segregation during the first meiotic division (Hunter, 2015). The D-loop is the joint molecule produced by the Rad51-DNA filament after homology search and DNA strand invasion, key steps of the HR process (Heyer et al., 2010). DNA polymerases, in particular DNA polymerase δ, extend the invading 3'-OH in the D-loop (McVey et al., 2016). The extended D-loop is a critical intermediate in determining crossover/non-crossover outcome. In the double Holliday junction (dHJ) pathway, where both DSB ends are engaged to form a joint molecule with two Holliday junctions (HJs), both crossover and noncrossover products can be formed by nucleolytic resolution, while enzymatic dissolution leads to non-crossover products only. In break-induced replication, recombination-associated DNA synthesis extends for the rest of the chromosome arm directly causing LOH. During Synthesis-Dependent Strand Annealing (SDSA), the newly extended D-loop is disrupted to produce exclusively non-crossover products, thus avoiding the possibility for LOH. SDSA is the preferred HR pathway in somatic cells and is likely dynamically regulated to ensure faithful DNA repair while avoiding LOH and chromosome rearrangements. Multiple enzymes can act on D-loops either to abort recombination (anti-recombination) or influence the repair outcome (crossover/non-crossover) (Heyer et al., 2010). The first DNA strand invasion product is the nascent D-loop and reversion of this HR intermediate represents a mechanism of anti-recombination. Several proteins have been shown to disrupt protein-free, nascent D-loops in vitro, including Sgs1 and its human homolog BLM (Bachrati et al., 2006; Fasching et al., 2015; van Brabant et al., 2000). Rad54 is required for D-loop formation in yeast and stimulates D-loop formation by the human RAD51 protein (Ceballos and Heyer, 2011). Both yeast and human Rad54 can also dismantle D-loops made with short invading ssDNAs in reconstituted in vitro reactions containing Rad51 and RPA. This is especially true for invading ssDNA lacking flanking dsDNA regions such as found in a resected DSB (Bugreev et al., 2007a; Wright and Heyer, 2014). Moreover, Top3-Rmi1, a type1A topoisomerase that associates with Sgs1 (human BLM-TOPOIIIα-RMI1/2 is the homologous complex) efficiently dissolves Rad51-mediated nascent D-loops in reconstituted reactions, an activity that is shared by the human TOPOIIIα-RMI1/2 complex (Fasching et al., 2015) and appears to be physiologically relevant (Kaur et al., 2015; Tang et al., 2015). Finally, human RTEL-1 can reverse RAD51-mediated D-loops and may act in the specific context of telomeres in dismantling T-loops (Vannier et al., 2012). Although quite similar in DNA structure, the extended D-loop represents a very different target, and dismantling this HR intermediate is pro-recombinogenic affecting the crossover/non-crossover outcome. Three major helicases have been genetically implicated in this process in the budding yeast Saccharomyces cerevisiae: Sgs1, Mph1, and Srs2. Current evidence suggests that all three act in distinct but possibly partially overlapping pathways (Ira et al., 2003; Mitchel et al., 2013; Prakash et al., 2009). These helicases represent the prototypes for the homologous or analogous activities in all eukaryotes including the human proteins BLM (yeast Sgs1), FANCM (yeast Mph1), and FANCJ, FBH1, PARI, RECQ1, RECQ5, RTEL-1 (proteins with analogous activities to Srs2) (Heyer et al., 2010; Sung and Klein, 2006). Sgs1 (human BLM) is involved at multiple stages in HR as part of a complex with Top3-Rmi1 (human TOPOIIIα-RMI1/2) including DSB end-resection and dHJ dissolution (Bizard and Hickson, 2014; Cejka et al., 2010; Niu et al., 2010). Mutations in Sgs1 increase the crossover/non-crossover ratio, and this effect is explained by the role of Sgs1 in dHJ dissolution, as a defect in dHJ dissolution provides opportunity for nucleolytic resolution of dHJs and crossover formation (Ira et al., 2003). Mph1 (human FANCM) is a 3'−5' DNA helicase required for recombination-dependent error-free bypass of DNA damage during DNA replication (Prakash et al., 2005; Schürer et al., 2004). Genetic evidence shows that Mph1 contributes to the SDSA pathway, and the Mph1 protein is able to disrupt nascent and extended D-loops during in vitro reconstituted reactions (Prakash et al., 2009; Sebesta et al., 2011). The SRS2 gene was originally discovered as a suppressor of a rad6 mutation (SRS2=Suppressor of RAD Six) and equally suppresses a defect in the RAD18 gene, which encode the Rad6-Rad18 ubiquitin E3 ligase that targets PCNA for mono-ubiquitination to favor tranlesion DNA synthesis (Hoege et al., 2002; Lawrence and Christensen, 1979). Srs2 is a member of the SF1 helicase family and translocates on ssDNA with a 3' to 5' polarity using the energy from ATP hydrolysis (Rong and Klein, 1993). The Srs2 ATPase activity is required for both its activities in HR (anti-recombination, pro-SDSA; see below). The Srs2 helicase represents the prototypic anti-recombinase dismantling the Rad51-ssDNA filament, which performs the central HR reactions of homology search and DNA strand invasion (Krejci et al., 2003; Veaute et al., 2003). In addition, accumulating genetic evidence also reveals a positive role of Srs2 in HR, specifically in the formation of non-crossover products by the SDSA pathway (Aylon et al., 2003; Dupaigne et al., 2008; Ira et al., 2003; Mitchel et al., 2013; Miura et al., 2013; Robert et al., 2006; Saponaro et al., 2010). In an HO-induced ectopic recombination assay, srs2∆ cells show a significant decrease in the level of non-crossover products; however, the level of crossovers remains almost unchanged, leading to an increase of percentages of crossovers among the total products (Ira et al., 2003). Similarly, in a spontaneous ectopic recombination assay, srs2∆ cells show a four-fold increase in crossover formation such that almost half of the recombination products are crossovers (Robert et al., 2006). Post-translational modifications of PCNA are involved, as suggested by the genetic analysis of PCNA mutants defective in ubiquitylation/sumoylation, of the SUMO ligase Siz1, and the ubiquitin-conjugating enzyme Rad6, all of which shows increase in crossover levels in a plasmid-based SDSA assay (Miura et al., 2013). The involvement of SUMO-PCNA in crossover suppression is also confirmed in other ectopic recombination systems (Burkovics et al., 2013; Robert et al., 2006). In sum, these data provide compelling evidence for an additional, pro-recombinogenic role of Srs2. It was proposed that Srs2 disrupts extended D-loops to favor annealing with the second end during SDSA to generate non-crossover products (Ira et al., 2003; Robert et al., 2006). While the mechanism of anti-recombination by Srs2 is well established, the mechanisms involved in its pro-recombination (SDSA) role and its function in adaptation/recovery remain to be determined (Macris and Sung, 2005; Marini and Krejci, 2010; Vaze et al., 2002). Biochemical characterization of Srs2 demonstrated that it unwinds various synthetic replication and recombination intermediates including replication forks, 3′- and 5′- flaps, Holliday junction (HJ), and nicked HJ, but not D-loops in reconstituted recombination reactions (Le Breton et al., 2008; Marini and Krejci, 2012; Prakash et al., 2009; Sebesta et al., 2011). It was proposed that Srs2 competes with Pol δ for PCNA binding to inhibit HR-associated DNA synthesis, and by this SDSA, in an ATP-independent mechanism (Burkovics et al., 2013). However, later genetic work showed that the Srs2 ATPase activity is essential for its SDSA activity (Kolesar et al., 2016; Miura et al., 2013), suggesting that competition for PCNA binding could be an aspect but not the underlying fundamental mechanism. The apparent lack of D-loop disruption activity of Srs2 also suggested a second possible mechanism for its SDSA activity by dissociating Rad51 from the second end of the DSB to enable annealing with extended invading strand from the disrupted D-loop (Marini and Krejci, 2010; Mitchel et al., 2013). Here, we report that Srs2 is capable in vitro to disrupt Rad51/Rad54-produced D-loop structures mimicking physiological length and structures, providing biochemical evidence for a specific SDSA mechanism by Srs2. The SDSA pathway was partially reconstituted with RPA, Rad51, Rad54, RFC, DNA Polymerase δ and three different but fully modified forms of PCNA. Consistent with the genetic data, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion with a slight but significant preference for extending D-loops over unextended D-loops when SUMO-PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA (Ubi-PCNA). Our data provide a plausible mechanism of Srs2 activity in SDSA and assign a specific role of PCNA sumoylation during HR. Results Srs2 disrupts D-loops mimicking physiological length in a time- and concentration-dependent manner S. cerevisiae Rad51 relies on Rad54 to generate D-loop structures. Typically in reconstituted systems, short ssDNAs (~35–100 nts) are used for Rad51 filament formation and DNA strand invasion, however the D loops products in such reactions suffer from instability due to Rad54’s ability to dismantle these short D loops efficiently (Bugreev et al., 2007b; Wright and Heyer, 2014). This complicates data analysis and was found to be unsuitable to explore the D-loop disruption activity of Srs2 (Burkovics et al., 2013; Prakash et al., 2009). Thus, there is a need to generate stable D-loop structures in reconstituted reactions. To this end, we utilized a series of long ssDNA substrates, which have been designed to resemble physiological-length Rad51 filaments that produce relatively stable D-loop structure (Wright and Heyer, 2014). An ssDNA with 607 nucleotides (named ‘607’ thereafter) of homology to a supercoiled dsDNA donor is able to form D-loops with high yield (~50%) and stability over the time course of a D-loop reaction (Figure 1A,B). In addition, we carefully staged the reaction by adding Srs2 10 min after the initiation of D-loop formation by Rad54 and dsDNA substrate, which allows accumulation of maximal D-loop levels (Wright and Heyer, 2014). This protocol avoids the complication of overlaying the phase of D-loop formation with D-loop dissociation catalyzed by Srs2. Previous attempts to identify D-loop disruption activity by Srs2 used reaction schemes where Srs2 was added immediately after or simultaneously with Rad54 and dsDNA substrate (Burkovics et al., 2013; Prakash et al., 2009). The combination of staged reactions and long ssDNA substrates enabled us to identify robust dissociation of D-loops by Srs2 in a time- and concentration-dependent manner (Figure 1B,C). As previously observed (Wright and Heyer, 2014), 607 can invade multiple dsDNA molecules to produce D-loops, where one ssDNA invaded up to three duplex DNA molecules (Figure 1B). All D-loop species from single invasion to multiple invasions were disassembled almost completely by 25 nM Srs2 in a 25 min reaction (Figure 1C). At intermediate concentrations (5 nM in Figure 1B) it appears as if multiple invasion products are more sensitive to Srs2. However, multiple invasions are processed into single invasions before complete disruption, making it impossible to assess whether multiple invasions or single invasions are preferentially disrupted. As little as 2.5 nM Srs2 showed significant D-loop disruption in these reactions that contained 1 nM invading ssDNA, showing that Srs2 is highly effective in D-loop disruption. D-loop disruption by Srs2 is not dependent on the presence of the single-stranded DNA binding protein RPA (Figure 1—figure supplement 1). We conclude that Srs2 is capable of disrupting nascent D-loops, and below we show directly that Srs2 is also capable of disrupting D-loops that are being extended by DNA polymerase δ, the presumed in vivo substrate in the SDSA pathway. Figure 1 with 2 supplements see all Download asset Open asset Srs2 disrupts D-loops in a concentration-, time-, and helicase activity-dependent manner. (A) D-loop disruption assay. Fully homologous ssDNA with 607 nucleotides was used as substrates in B and C. Rad51 (0.2 µM) was incubated with 1 nM ssDNA substrate (Rad51/nt = 1:3) for 10 min at 30°C. RPA (33 nM) was added for another 10 min incubation before the addition of 84 nM Rad54 and 7 nM supercoiled plasmid dsDNA (21 µM bp). (B) Time course of Srs2 titration into pre-formed D-loops produced by Rad51 and Rad54. Srs2 (0 or 5 nM) was added and incubated for various time at 30°C. Samples were taken at 0, 5, 15, and 25 min and quenched by SDS/Proteinase K treatment. (C) Quantitation of normalized total D-loop yield in (B) and additional titrations. Absolute initial D-loop yields were between 50% and 75%. (D) Srs2-K41S is deficient in ATP hydrolysis. Rates of ATP hydrolysis were determined for 5 nM wild type Srs2 (WT) or catalytic-deficient Srs2-K41S (K41S) in D-loop reaction buffer containing either 0 or 100 mM NaCl, with or without 10 µM φX174 ssDNA as cofactor. (E) Time course of D-loop disruption by 5 nM of either wild type Srs2 (WT) or catalytic-deficient Srs2-K41S (K41S). Plotted are means ± standard deviation from n = 3. Absolute initial D-loop yields were between 44% and 72%. (F) Induced sister chromatid recombination assay. The normalized (wild type = 100%) induced recombination frequencies are shown at 0.24 µg/mL 4-NQO as means ± standard deviations from three experiments for wild type, srs2△, and srs2-K41A (see Table 1). The frequency of spontaneous G418R cells was subtracted from the induced recombination frequencies. The full 4-NQO dose response is shown in Figure 1—figure supplement 2. https://doi.org/10.7554/eLife.22195.002 Figure 1—source data 1 Source data for Figure 1C. https://doi.org/10.7554/eLife.22195.003 Download elife-22195-fig1-data1-v1.xlsx Figure 1—source data 2 Source data for Figure 1D. https://doi.org/10.7554/eLife.22195.004 Download elife-22195-fig1-data2-v1.xlsx Figure 1—source data 1 Source data for Figure 1E. https://doi.org/10.7554/eLife.22195.005 Download elife-22195-fig1-data1-v1.xlsx Figure 1—source data 4 Source data for Figure 1F and Figure 1—figure supplement 2A–D. https://doi.org/10.7554/eLife.22195.006 Download elife-22195-fig1-data4-v1.xlsx The translocase/helicase activity of Srs2 is required for D-loop disruption In plasmid-based and chromosomal assays, the ATPase activity of Srs2 is required for normal levels of non-crossover formation (Kolesar et al., 2016; Miura et al., 2013). To determine whether the ability to translocate or unwind dsDNA is required for Srs2 to disassemble D-loops, we purified an ATPase-defective Srs2 point mutant carrying a single amino acid substitution in the Walker-A motif (Srs2-K41S). Srs2-K41S displays no detectable ATP hydrolysis (Figure 1D), while wild type Srs2 shows strong, ssDNA-stimulated ATP hydrolysis. As expected, the motor/helicase activity of Srs2 was required to dissociate D-loops (Figure 1E), since the addition of Srs2-K41S did not alter D-loop level. The Srs2-K41S mutant protein appears to fold properly as it purifies like the wild type protein (not shown) and interacts with Rad54 like wild type Srs2 (Figure 3E), suggesting that it is the lack of ATPase and not incorrect protein folding that leads to the D-loop disruption defect. Moreover, the Srs2 motor activity is required for 4-Nitroquinine-N-oxide (4-NQO)-induced recombination (Figure 1F), an assay that reports on Rad51-dependent sister-chromatid recombination (Ede et al., 2011). As expected, deletion of RAD51 is epistatic to deletion of SRS2 for induced recombination, and induced recombination is strongly Rad51-dependent (Figure 1—figure supplement 2A–C). Additionally, mutation of SRS2 increases the spontaneous recombination rate in this assay system and this increase is abolished by a rad51 mutation (Figure 1—figure supplement 2D). This result is consistent with previous observations that show a hyper-rec effect for SRS2 deletion mutations in spontaneous recombination (Palladino and Klein, 1992). Finally, the Srs2 motor activity is also required for anti-recombination in vivo as indicated by the suppression of the severe sensitivity of rad18△ strain towards UV and methyl methanesulfonate (MMS) by the srs2-K41R and srs2-K41A mutations (Figure 1—figure supplement 2E). rad18△ suppression by these SRS2 Walker A box mutations was not evident in a different assay of UV-sensitivity (Burkovics et al., 2013). Together these results show that the translocase/ATPase activity of Srs2 is required for its two essential functions in HR, Rad51 filament disruption (anti-recombination) and D-loop disruption (pro-SDSA/anti-crossover). These results are consistent with previous findings that the Srs2 motor activity is essential for its anti-recombination activity (Krejci et al., 2004) and pro-SDSA function (Kolesar et al., 2016; Miura et al., 2013). Srs2 is capable of disrupting different D-loop structures During long-range DSB resection, Sgs1/Dna2 or Exo1, degrade the 5' strand to produce 3' tailed ssDNA spanning hundreds of nucleotides, which represents the in vivo substrate for Rad51 filament formation (Mimitou and Symington, 2008; Zhu et al., 2008). After showing that Srs2 efficiently disrupts D-loops, we wanted to test further whether Srs2 shows any substrate preference towards D-loops produced from ssDNA with zero (607), one (98ds-607, 3'-tailed), or two (98ds-607-78ds) terminal duplex heterologies mimicking different cellular repair scenarios of DSB repair (3'-tailed) or gap repair (Figure 2A). These D-loops with terminal heterologies add another layer of stability against Rad54 disruption in addition to increased ssDNA length that enables longer heteroduplex (hDNA) to form (Wright and Heyer, 2014). The yield of D-loop was slightly different with all the three substrates, but Srs2 dismantled all D-loops efficiently (Figure 2B,C). After normalizing the D-loop level according to the initial yield, it became clear that Srs2 displays a significant preference toward D-loops made with 3'-tailed invading DNA (98ds-607) (Figure 2D). This preference is confirmed by further experiments determining the preferred orientation of D-loop disruption (see below, Figure 4). We conclude that Srs2 is capable of disrupting different nascent D-loop structures with modest preference for D-loops containing 3'-tailed invading DNA, the mimic for physiological DSB repair. Figure 2 Download asset Open asset Srs2 disrupts various D-loops produced from ssDNA substrates mimicking physiological length and structure. (A) D-loop disruption assay and substrates. Rad51 (0.2 µM) was incubated with 1 nM ssDNA substrates (Rad51/nt = 1:3) for 10 min at 30°C. 33 nM RPA was added for another 10 min incubation before the addition of 84 nM Rad54 (84 nM) and 7 nM supercoiled plasmid dsDNA (21 µM bp). Srs2 (0, 5, or 25 nM) was added and incubated for 10 min at 30°C before the reaction was stopped by SDS/Proteinase K. (B) Srs2 titration in D-loop disruption assays with three different DNA constructs, 3' tailed DNA with 5' heterology, ssDNA with full homology, gapped DNA with both 5' and 3' heterologies. (C) Quantitation of total D-loops from (B). (D) Quantitation of normalized D-loops from (B) setting initial D-loop yield as 100%. Plotted are means ± standard deviation from n = 3. https://doi.org/10.7554/eLife.22195.010 Figure 2—source data 1 Source data for Figure 2. https://doi.org/10.7554/eLife.22195.011 Download elife-22195-fig2-data1-v1.xlsx Srs2 disrupts Rad51/Rad54 produced D-loops more effectively than protein-free D-loops Next, we wanted to discern the specificity of Srs2 towards D-loops as a DNA intermediate and identify any effects of the proteins required for D-loop formation on D-loop disruption. To this end, we generated protein-free D-loops and compared the disruption by Srs2 with D-loops formed in reconstituted reactions with the cognate Rad51 and Rad54 proteins. First, we used Rad51/Rad54 to generate 607-based D-loop structure at high yield conditions and purified protein-free D-loops by removing all proteins. Then, we tested whether these protein-free D-loops can serve as substrates for Srs2. The reactions contained about 85% of protein-free D-loops, and the results are plotted as normalized D-loops with the initial level set at 100% to allow comparison. As shown in Figure 3B, 15 nM Srs2 disrupts only about 35% of the available protein-free D-loops in 40 min, while Srs2 at similar enzyme/DNA ratios disrupts almost all D-loops at 25 min in the Rad51/Rad54 reconstituted reaction (Figures 1C, 25 nM >95%, 5 nM ~70%). Using this data (Figure 1C, Figure 3B), we estimate an about ten-fold difference in the disruption between protein-free D-loops and D-loops in the reconstituted reaction. Thus, although Srs2 recognizes and loads onto D-loop as a protein-free DNA structure, the sheer presence of Rad51 and Rad54 enables more effective disruption by Srs2. Srs2 interacts with Rad51 physically through its C-terminal interaction site (Colavito et al., 2009), and this protein-protein interaction has been demonstrated to trigger ATP turnover and dissociation of Rad51 from ssDNA (Antony et al., 2009). Only amino acids 783–859 of the Rad51 protein interaction site of Srs2 were found to be required for non-crossover formation in vivo but not amino acids 860–998 (Miura et al., 2013). In the absence of more defined Rad51 interaction mutations, it is difficult to assess whether Rad51 interaction is required for SDSA. Rad54 removes Rad51 at the 3' end of the invading strand during heteroduplex formation to clear the stage for DNA polymerases (Li and Heyer, 2009; Wright and Heyer, 2014), suggesting that Rad51 may not be in a position to interact with Srs2 during D-loop disruption. Therefore, we entertained the idea that Srs2 might interact with Rad54 and discovered a direct and robust physical interaction between Srs2 and Rad54 (Figure 3C,D). The Srs2-Rad54 interaction might be involved in the observed preference to disrupt D-loops in reconstituted reactions using the cognate proteins. We conclude that interactions with Rad51 and Rad54, but not RPA (see Figure 1—figure supplement 1), potentially play an important role in Srs2-mediated D-loop disruption. Figure 3 Download asset Open asset Srs2 disrupts Rad51/Rad54 reconstituted D-loops with higher efficiency than protein-free D-loops. (A) D-loop disruption assay using purified protein-free D-loops generated by Rad51 and Rad54. (B) Protein-free D-loops were split into buffer containing Srs2 or no protein and incubated at 30°C. Samples were taken at 0, 5, 15, and 40 min, and the final concentration of Srs2 is 15 nM. (C) GST-Rad54 physically interacts with Srs2. 17.5 nM GST-Rad54 or 175 nM GST were incubated with either 8.75 nM or 17.5 nM of Srs2 for 1 hr before pulldown. (D) The protein interaction between Rad54 and Srs2 is sensitive to increasing ionic strength. GST-Rad54 and Srs2 were formed in buffer containing 0, 100, 175, 250, or 400 mM NaCl before pulldown. (E) Srs2-K41S interacts with Rad54 with similar salt sensitivity, compared to wild type Srs2. Both wild type Srs2 and Srs2-K41S were allowed to form complex with GST-Rad54 in buffer containing 0, 250, and 500 mM NaCl before pulldown. Plotted are means ± standard deviation from n = 3. In (D) and (E), 31.3 nM GST-Rad54 or 313 nM GST (GE Healthcare) were incubated with 31.3 nM of Srs2 or Srs2-K41S in the same buffer containing indicated amount of NaCl for 1 hr before pulldown. Pulldown Srs2 amount in buffer containing 0 mM NaCl was normalized to 100 (D) or 1 (E). https://doi.org/10.7554/eLife.22195.012 Figure 3—source data 1 Source data for Figure 3B. https://doi.org/10.7554/eLife.22195.013 Download elife-22195-fig3-data1-v1.xlsx Figure 3—source data 2 Source data for Figure 3E. https://doi.org/10.7554/eLife.22195.014 Download elife-22195-fig3-data2-v1.xls Srs2 prefers to disrupt D-loops where the 3'-end is part of the heteroduplex DNA To determine whether Srs2 has a preferred polarity in D-loop disruption, we used a previously characterized hDNA digestion assay (Wright and Heyer, 2014). Formation and decrease of hDNA regions were assessed by the ability of the invading strand to be digested by restriction enzymes once the cut site has been made double-stranded by hDNA formation in the D-loop (Figure 4A). The 3 kb plasmid donor will allow incorporation of about 200 nucleotides of the invading strand into hDNA, limited by the number of negative supercoils (Li et al., 2009). For D-loops formed by the invasion of 607, this means that the heteroduplex region will not contain the MluI and BstXI sites (362 nucleotides apart) simultaneously. The observation that the sum of the MluI (5') and BstXI (3') digestion products matches exactly the amount of D-loop products (Figure 4C,D) independently confirms that both restriction sites never cohabitate, otherwise a sum of greater than 100% of the D-loop amount would be expected. Thus, there were two major species of D-loop, MluI-incorporated D-loop (30% yield) and BstXI-incorporated D-loop (42% yield) (Figure 4A,E). The addition of Srs2 to an ongoing Rad51/Rad54-reconstituted D-loop reaction revealed a marked preference for disruption of D-loops in which the 3' end-proximal region (BstX1 cleavage is 111 nt from the 3' end) had been incorporated into hDNA. The 3' proximal/BstXI-incorporated D-loops show an immediate and rapid decline from 42 to 10 percent in the ~30 s it took to add the enzyme and stop the reaction (Figure 4E). In contrast, the 5' proximal MluI -incorporated D-loops showed a slower time course of disruption that did not reach a final level until 15 min (Figure 4E). As is the case in the absence of Srs2, the D-loop levels closely follow the sum of 3' and 5' proximal digestion products, and the cleavage levels never decrease for one site while increasing for the other (Figure 4D), indicating that Srs2 action does not result in extensive branch migration of the hDNA region before complete hDNA disruption is accomplished. We conclude that Srs2 prefers disrupting D-loops, which include the 3' region of the invading DNA in the heteroduplex DNA. This is in congruence with the data of Figure 2B–D, where ds98-607 D loops are preferentially disrupted by Srs2, followed by 607 and then gapped ssDNA. This follows the same rank order of 3' proximal site incorporation preference that was previously mapped by the hDNA incorporation assay for these same three substrates under identical conditions (Wright and Heyer, 2014). Further, this may reflect the need for Srs2 to disrupt 3' heteroduplex to promote the D-loop reversal step of SDSA. Figure 4 Download asset Open asset Srs2 preferentially disrupts D-loops with 3' proximal hDNA. (A) hDNA detection assay. Note that since the BstXI and MluI sites are 362 nt apart, they cannot be incorporated into the same plasmid DNA molecule in a co" @default.
- W2984697050 created "2019-11-22" @default.
- W2984697050 creator A5005110886 @default.
- W2984697050 creator A5013697850 @default.
- W2984697050 creator A5038747216 @default.
- W2984697050 creator A5042463108 @default.
- W2984697050 creator A5048501686 @default.
- W2984697050 creator A5057200213 @default.
- W2984697050 creator A5062750651 @default.
- W2984697050 creator A5079313612 @default.
- W2984697050 creator A5085352453 @default.
- W2984697050 date "2017-04-26" @default.
- W2984697050 modified "2023-09-25" @default.
- W2984697050 title "Author response: Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops" @default.
- W2984697050 doi "https://doi.org/10.7554/elife.22195.035" @default.
- W2984697050 hasPublicationYear "2017" @default.
- W2984697050 type Work @default.
- W2984697050 sameAs 2984697050 @default.
- W2984697050 citedByCount "1" @default.
- W2984697050 countsByYear W29846970502017 @default.
- W2984697050 crossrefType "peer-review" @default.
- W2984697050 hasAuthorship W2984697050A5005110886 @default.
- W2984697050 hasAuthorship W2984697050A5013697850 @default.
- W2984697050 hasAuthorship W2984697050A5038747216 @default.
- W2984697050 hasAuthorship W2984697050A5042463108 @default.
- W2984697050 hasAuthorship W2984697050A5048501686 @default.
- W2984697050 hasAuthorship W2984697050A5057200213 @default.
- W2984697050 hasAuthorship W2984697050A5062750651 @default.
- W2984697050 hasAuthorship W2984697050A5079313612 @default.
- W2984697050 hasAuthorship W2984697050A5085352453 @default.
- W2984697050 hasBestOaLocation W29846970501 @default.
- W2984697050 hasConcept C12554922 @default.
- W2984697050 hasConcept C185592680 @default.
- W2984697050 hasConcept C2756471 @default.
- W2984697050 hasConcept C54355233 @default.
- W2984697050 hasConcept C552990157 @default.
- W2984697050 hasConcept C70721500 @default.
- W2984697050 hasConcept C82381507 @default.
- W2984697050 hasConcept C86803240 @default.
- W2984697050 hasConcept C95444343 @default.
- W2984697050 hasConceptScore W2984697050C12554922 @default.
- W2984697050 hasConceptScore W2984697050C185592680 @default.
- W2984697050 hasConceptScore W2984697050C2756471 @default.
- W2984697050 hasConceptScore W2984697050C54355233 @default.
- W2984697050 hasConceptScore W2984697050C552990157 @default.
- W2984697050 hasConceptScore W2984697050C70721500 @default.
- W2984697050 hasConceptScore W2984697050C82381507 @default.
- W2984697050 hasConceptScore W2984697050C86803240 @default.
- W2984697050 hasConceptScore W2984697050C95444343 @default.
- W2984697050 hasLocation W29846970501 @default.
- W2984697050 hasOpenAccess W2984697050 @default.
- W2984697050 hasPrimaryLocation W29846970501 @default.
- W2984697050 hasRelatedWork W1601177537 @default.
- W2984697050 hasRelatedWork W1643501146 @default.
- W2984697050 hasRelatedWork W1835778803 @default.
- W2984697050 hasRelatedWork W1963714825 @default.
- W2984697050 hasRelatedWork W1996781975 @default.
- W2984697050 hasRelatedWork W2030923203 @default.
- W2984697050 hasRelatedWork W2078327356 @default.
- W2984697050 hasRelatedWork W2080778966 @default.
- W2984697050 hasRelatedWork W2087714034 @default.
- W2984697050 hasRelatedWork W2089113648 @default.
- W2984697050 isParatext "false" @default.
- W2984697050 isRetracted "false" @default.
- W2984697050 magId "2984697050" @default.
- W2984697050 workType "peer-review" @default.