Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984811207> ?p ?o ?g. }
- W2984811207 endingPage "111452" @default.
- W2984811207 startingPage "111452" @default.
- W2984811207 abstract "The availability of satellite optical information is often hampered by the natural presence of clouds, which can be problematic for many applications. Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions. Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation, but given its high and distinct sensitivity to different surface properties, the fusion of SAR and optical data still remains an open challenge. In this work, we propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among multisensor time series, to detect vegetated areas over which the synergy between SAR-optical imageries is profitable. For this purpose, we use the Sentinel-1 Radar Vegetation Index (RVI) and Sentinel-2 Leaf Area Index (LAI) time series over a study area in north west of the Iberian peninsula. Through a physical interpretation of MOGP trained models, we show its ability to provide estimations of LAI even over cloudy periods using the information shared with RVI, which guarantees the solution keeps always tied to real measurements. Results demonstrate the advantage of MOGP especially for long data gaps, where optical-based methods notoriously fail. The leave-one-image-out assessment technique applied to the whole vegetation cover shows MOGP predictions improve standard GP estimations over short-time gaps (R2 of 74% vs 68%, RMSE of 0.4 vs 0.44 [m2m-2]) and especially over long-time gaps (R2 of 33% vs 12%, RMSE of 0.5 vs 1.09 [m2m-2]). A second assessment is focused on crop-specific regions, clustering pixels fulfilling specific model conditions where the synergy is profitable. Results reveal the MOGP performance is crop type and crop stage dependent. For long time gaps, best R2 are obtained over maize, ranging from 0.1 (tillering) to 0.36 (development) up to 0.81 (maturity); for moderate time gap, R2 = 0.93 (maturity) is obtained. Crops such as wheat, oats, rye and barley, can profit from the LAI-RVI synergy, with R2 varying between 0.4 and 0.6. For beet or potatoes, MOGP provides poorer results, but alternative descriptors to RVI should be tested for these specific crops in the future before discarding synergy real benefits. In conclusion, active-passive sensor fusion with MOGP represents a novel and promising approach to cope with crop monitoring over cloud-dominated areas." @default.
- W2984811207 created "2019-11-22" @default.
- W2984811207 creator A5006820358 @default.
- W2984811207 creator A5039052506 @default.
- W2984811207 creator A5056123979 @default.
- W2984811207 creator A5079448372 @default.
- W2984811207 creator A5085480844 @default.
- W2984811207 creator A5086095782 @default.
- W2984811207 date "2019-12-01" @default.
- W2984811207 modified "2023-10-15" @default.
- W2984811207 title "Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes" @default.
- W2984811207 cites W1949117419 @default.
- W2984811207 cites W1970744877 @default.
- W2984811207 cites W1981967583 @default.
- W2984811207 cites W1984670836 @default.
- W2984811207 cites W1986812364 @default.
- W2984811207 cites W1987607942 @default.
- W2984811207 cites W1999469638 @default.
- W2984811207 cites W2001599060 @default.
- W2984811207 cites W2008168496 @default.
- W2984811207 cites W2015345826 @default.
- W2984811207 cites W2017294598 @default.
- W2984811207 cites W2018636632 @default.
- W2984811207 cites W2021494835 @default.
- W2984811207 cites W2027371372 @default.
- W2984811207 cites W2028934227 @default.
- W2984811207 cites W2036745212 @default.
- W2984811207 cites W2038617433 @default.
- W2984811207 cites W2055137896 @default.
- W2984811207 cites W2056435747 @default.
- W2984811207 cites W2061382717 @default.
- W2984811207 cites W2062021861 @default.
- W2984811207 cites W2063623478 @default.
- W2984811207 cites W2068251166 @default.
- W2984811207 cites W2072093516 @default.
- W2984811207 cites W2081049226 @default.
- W2984811207 cites W2081820160 @default.
- W2984811207 cites W2088603520 @default.
- W2984811207 cites W2096682311 @default.
- W2984811207 cites W2101335411 @default.
- W2984811207 cites W2111787810 @default.
- W2984811207 cites W2113410727 @default.
- W2984811207 cites W2113503197 @default.
- W2984811207 cites W2113656029 @default.
- W2984811207 cites W2114621791 @default.
- W2984811207 cites W2116287613 @default.
- W2984811207 cites W2118417501 @default.
- W2984811207 cites W2126087248 @default.
- W2984811207 cites W2128954412 @default.
- W2984811207 cites W2138751033 @default.
- W2984811207 cites W2160434086 @default.
- W2984811207 cites W2163642873 @default.
- W2984811207 cites W2166554126 @default.
- W2984811207 cites W2167881994 @default.
- W2984811207 cites W221493477 @default.
- W2984811207 cites W2217449633 @default.
- W2984811207 cites W2247062920 @default.
- W2984811207 cites W2413379912 @default.
- W2984811207 cites W2531109463 @default.
- W2984811207 cites W2585309444 @default.
- W2984811207 cites W2745131289 @default.
- W2984811207 cites W2747196278 @default.
- W2984811207 cites W2770155218 @default.
- W2984811207 cites W2778936354 @default.
- W2984811207 cites W2806394060 @default.
- W2984811207 cites W2883102714 @default.
- W2984811207 cites W2901501444 @default.
- W2984811207 cites W2906799152 @default.
- W2984811207 cites W3100157715 @default.
- W2984811207 cites W4206212643 @default.
- W2984811207 doi "https://doi.org/10.1016/j.rse.2019.111452" @default.
- W2984811207 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36082234" @default.
- W2984811207 hasPublicationYear "2019" @default.
- W2984811207 type Work @default.
- W2984811207 sameAs 2984811207 @default.
- W2984811207 citedByCount "57" @default.
- W2984811207 countsByYear W29848112072020 @default.
- W2984811207 countsByYear W29848112072021 @default.
- W2984811207 countsByYear W29848112072022 @default.
- W2984811207 countsByYear W29848112072023 @default.
- W2984811207 crossrefType "journal-article" @default.
- W2984811207 hasAuthorship W2984811207A5006820358 @default.
- W2984811207 hasAuthorship W2984811207A5039052506 @default.
- W2984811207 hasAuthorship W2984811207A5056123979 @default.
- W2984811207 hasAuthorship W2984811207A5079448372 @default.
- W2984811207 hasAuthorship W2984811207A5085480844 @default.
- W2984811207 hasAuthorship W2984811207A5086095782 @default.
- W2984811207 hasBestOaLocation W29848112072 @default.
- W2984811207 hasConcept C105795698 @default.
- W2984811207 hasConcept C119857082 @default.
- W2984811207 hasConcept C121332964 @default.
- W2984811207 hasConcept C127313418 @default.
- W2984811207 hasConcept C127413603 @default.
- W2984811207 hasConcept C139945424 @default.
- W2984811207 hasConcept C142724271 @default.
- W2984811207 hasConcept C146978453 @default.
- W2984811207 hasConcept C151406439 @default.
- W2984811207 hasConcept C154945302 @default.