Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984911178> ?p ?o ?g. }
- W2984911178 abstract "Modern smartphones and smartwatches are equipped with inertial sensors (accelerometer, gyroscope, and magnetometer) that can be used for Human Activity Recognition (HAR) to infer tasks such as daily activities, transportation modes and, gestures. HAR requires collecting raw inertial sensor values and training a machine learning model on the collected data. The challenge in this approach is that the models are trained for specific devices and device configurations whereas, in reality, the set of devices carried by a person may vary over time. Ideally, one would like activity inferencing to be robust of this variation and provide accurate predictions by making opportunistic use of information from available devices. Moreover, the devices may be located at different parts of the body (e.g. pocket, left and right wrist), may have different sets of sensors (e.g. a smartwatch may not have gyroscope while a smartphone might), and may differ in sampling frequencies. In this paper, we provide a solution which makes use of the information from available devices while being robust to their variations. Instead of training an end-to-end model for every permutation of device combinations and configurations, we propose a scalable deep learning based solution in which each device learns its own sensor fusion model that maps the raw sensor values to a shared low dimensional latent space which we call the 'SenseHAR'-a virtual activity sensor. The virtual sensor has the same format and similar behavior regardless of the subset of devices, sensor's availability, sampling rate, or a device's location. This would help machine learning engineers to develop their application specific (e.g., from gesture recognition to activities of daily life) models in a hardware-agnostic manner based on this virtual activity sensor. Our evaluations show that an application model trained on SenseHAR achieves the state of the art accuracies of 95.32%, 74.22% and 93.13% on PAMAP2, Opportunity(gestures) and our collected datasets respectively." @default.
- W2984911178 created "2019-11-22" @default.
- W2984911178 creator A5040505438 @default.
- W2984911178 creator A5051397079 @default.
- W2984911178 creator A5065874576 @default.
- W2984911178 creator A5067887132 @default.
- W2984911178 date "2019-11-10" @default.
- W2984911178 modified "2023-10-03" @default.
- W2984911178 title "SenseHAR" @default.
- W2984911178 cites W1551782597 @default.
- W2984911178 cites W1857382374 @default.
- W2984911178 cites W1906940141 @default.
- W2984911178 cites W1966445952 @default.
- W2984911178 cites W1982245736 @default.
- W2984911178 cites W1994595981 @default.
- W2984911178 cites W2002261403 @default.
- W2984911178 cites W2002840298 @default.
- W2984911178 cites W2023012603 @default.
- W2984911178 cites W2023962778 @default.
- W2984911178 cites W2026297770 @default.
- W2984911178 cites W2033876581 @default.
- W2984911178 cites W2037265949 @default.
- W2984911178 cites W2043286593 @default.
- W2984911178 cites W2051455168 @default.
- W2984911178 cites W2051522979 @default.
- W2984911178 cites W2057907879 @default.
- W2984911178 cites W2063598276 @default.
- W2984911178 cites W2066459332 @default.
- W2984911178 cites W2072066144 @default.
- W2984911178 cites W2073401630 @default.
- W2984911178 cites W2079530228 @default.
- W2984911178 cites W2098197972 @default.
- W2984911178 cites W2100495367 @default.
- W2984911178 cites W2104992654 @default.
- W2984911178 cites W2108328714 @default.
- W2984911178 cites W2108467170 @default.
- W2984911178 cites W2109626108 @default.
- W2984911178 cites W2114030649 @default.
- W2984911178 cites W2120615054 @default.
- W2984911178 cites W2123277412 @default.
- W2984911178 cites W2126511896 @default.
- W2984911178 cites W2128944537 @default.
- W2984911178 cites W2137100320 @default.
- W2984911178 cites W2139705460 @default.
- W2984911178 cites W2145343602 @default.
- W2984911178 cites W2149283560 @default.
- W2984911178 cites W2152423878 @default.
- W2984911178 cites W2153658537 @default.
- W2984911178 cites W2165074809 @default.
- W2984911178 cites W2168529464 @default.
- W2984911178 cites W2169776910 @default.
- W2984911178 cites W2170724010 @default.
- W2984911178 cites W2250539671 @default.
- W2984911178 cites W2304267454 @default.
- W2984911178 cites W2320625002 @default.
- W2984911178 cites W2402069821 @default.
- W2984911178 cites W2462964962 @default.
- W2984911178 cites W2473781013 @default.
- W2984911178 cites W2522625724 @default.
- W2984911178 cites W2526479943 @default.
- W2984911178 cites W2548335893 @default.
- W2984911178 cites W2553915786 @default.
- W2984911178 cites W2777460464 @default.
- W2984911178 cites W2781626483 @default.
- W2984911178 cites W2805572253 @default.
- W2984911178 cites W2888680699 @default.
- W2984911178 cites W2891284476 @default.
- W2984911178 cites W2899130027 @default.
- W2984911178 cites W2899151654 @default.
- W2984911178 cites W2900860600 @default.
- W2984911178 cites W2927224805 @default.
- W2984911178 cites W2949843150 @default.
- W2984911178 cites W4234531549 @default.
- W2984911178 cites W4385680524 @default.
- W2984911178 doi "https://doi.org/10.1145/3356250.3360032" @default.
- W2984911178 hasPublicationYear "2019" @default.
- W2984911178 type Work @default.
- W2984911178 sameAs 2984911178 @default.
- W2984911178 citedByCount "28" @default.
- W2984911178 countsByYear W29849111782020 @default.
- W2984911178 countsByYear W29849111782021 @default.
- W2984911178 countsByYear W29849111782022 @default.
- W2984911178 countsByYear W29849111782023 @default.
- W2984911178 crossrefType "proceedings-article" @default.
- W2984911178 hasAuthorship W2984911178A5040505438 @default.
- W2984911178 hasAuthorship W2984911178A5051397079 @default.
- W2984911178 hasAuthorship W2984911178A5065874576 @default.
- W2984911178 hasAuthorship W2984911178A5067887132 @default.
- W2984911178 hasBestOaLocation W29849111781 @default.
- W2984911178 hasConcept C107457646 @default.
- W2984911178 hasConcept C111919701 @default.
- W2984911178 hasConcept C121687571 @default.
- W2984911178 hasConcept C127413603 @default.
- W2984911178 hasConcept C146978453 @default.
- W2984911178 hasConcept C149635348 @default.
- W2984911178 hasConcept C150594956 @default.
- W2984911178 hasConcept C154945302 @default.
- W2984911178 hasConcept C158488048 @default.
- W2984911178 hasConcept C177264268 @default.
- W2984911178 hasConcept C199360897 @default.