Matches in SemOpenAlex for { <https://semopenalex.org/work/W2985019967> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2985019967 abstract "In the engineering area (e.g. aerospace, automotive, biology, circuits), dynamical systems are the basic framework used for modeling, controlling and analyzing a large variety of systems and phenomena. Due to the increasing use of dedicated computer-based modeling design software, numerical simulation turns to be more and more used to simulate a complex system or phenomenon and shorten both development time and cost. However, the need of an enhanced model accuracy inevitably leads to an increasing number of variables and resources to manage at the price of a high numerical cost. This counterpart is the justification for model reduction.For linear time-invariant systems, several model reduction approaches have been effectively developed since the 60’s. Among these, interpolation-based methods stand out due to theirflexibility and low computational cost, making them a predestined candidate in the reduction of truly large-scale systems. Recent advances demonstrate ways to find reduction parameters that locally minimize the H2 norm of the mismatch error.In general, a reduced-order approximation is considered to be a finite dimensional model. Thisrepresentation is quite general and a wide range of linear dynamical systems can be converted in this form, at least in principle. However, in some cases, it may be more relevant to find reduced- order models having some more complex structures. As an example, some transport phenomena systems have their Hankel singular values which decay very slowly and are not easily approximated by a finite dimensional model. In addition, for some applications, it is valuable to have a structured reduced-order model which reproduces the physical behaviors. That is why, in this thesis, reduced- order models having delay structures have been more specifically considered.This work has focused, on the one hand, in developing new model reduction techniques for reduced order models having delay structures, and, on the other hand, in finding new applications of model approximation. The major contribution of this thesis covers approximation topics and includes several contributions to the area of model reduction. A special attention was given to the H2 optimal model approximation problem for delayed structured models. For this purpose, some new theoretical and methodological results were derived and successfully applied to both academic and industrial benchmarks.In addition, the last part of this manuscript is dedicated to the analysis of time-delayed systems stability using interpolatory methods. Some theoretical statements as well as an heuristic are developed enabling to estimate in a fast and accurate way the stability charts of those systems." @default.
- W2985019967 created "2019-11-22" @default.
- W2985019967 creator A5072895148 @default.
- W2985019967 date "2017-01-11" @default.
- W2985019967 modified "2023-09-23" @default.
- W2985019967 title "Large-scale and infinite dimensional dynamical model approximation" @default.
- W2985019967 hasPublicationYear "2017" @default.
- W2985019967 type Work @default.
- W2985019967 sameAs 2985019967 @default.
- W2985019967 citedByCount "1" @default.
- W2985019967 countsByYear W29850199672020 @default.
- W2985019967 crossrefType "dissertation" @default.
- W2985019967 hasAuthorship W2985019967A5072895148 @default.
- W2985019967 hasConcept C105795698 @default.
- W2985019967 hasConcept C111335779 @default.
- W2985019967 hasConcept C11413529 @default.
- W2985019967 hasConcept C114275822 @default.
- W2985019967 hasConcept C121332964 @default.
- W2985019967 hasConcept C126255220 @default.
- W2985019967 hasConcept C127413603 @default.
- W2985019967 hasConcept C146978453 @default.
- W2985019967 hasConcept C167740415 @default.
- W2985019967 hasConcept C17744445 @default.
- W2985019967 hasConcept C191795146 @default.
- W2985019967 hasConcept C199539241 @default.
- W2985019967 hasConcept C2524010 @default.
- W2985019967 hasConcept C2776359362 @default.
- W2985019967 hasConcept C2779277453 @default.
- W2985019967 hasConcept C2780598303 @default.
- W2985019967 hasConcept C28826006 @default.
- W2985019967 hasConcept C33923547 @default.
- W2985019967 hasConcept C41008148 @default.
- W2985019967 hasConcept C57493831 @default.
- W2985019967 hasConcept C62520636 @default.
- W2985019967 hasConcept C79379906 @default.
- W2985019967 hasConcept C94625758 @default.
- W2985019967 hasConceptScore W2985019967C105795698 @default.
- W2985019967 hasConceptScore W2985019967C111335779 @default.
- W2985019967 hasConceptScore W2985019967C11413529 @default.
- W2985019967 hasConceptScore W2985019967C114275822 @default.
- W2985019967 hasConceptScore W2985019967C121332964 @default.
- W2985019967 hasConceptScore W2985019967C126255220 @default.
- W2985019967 hasConceptScore W2985019967C127413603 @default.
- W2985019967 hasConceptScore W2985019967C146978453 @default.
- W2985019967 hasConceptScore W2985019967C167740415 @default.
- W2985019967 hasConceptScore W2985019967C17744445 @default.
- W2985019967 hasConceptScore W2985019967C191795146 @default.
- W2985019967 hasConceptScore W2985019967C199539241 @default.
- W2985019967 hasConceptScore W2985019967C2524010 @default.
- W2985019967 hasConceptScore W2985019967C2776359362 @default.
- W2985019967 hasConceptScore W2985019967C2779277453 @default.
- W2985019967 hasConceptScore W2985019967C2780598303 @default.
- W2985019967 hasConceptScore W2985019967C28826006 @default.
- W2985019967 hasConceptScore W2985019967C33923547 @default.
- W2985019967 hasConceptScore W2985019967C41008148 @default.
- W2985019967 hasConceptScore W2985019967C57493831 @default.
- W2985019967 hasConceptScore W2985019967C62520636 @default.
- W2985019967 hasConceptScore W2985019967C79379906 @default.
- W2985019967 hasConceptScore W2985019967C94625758 @default.
- W2985019967 hasOpenAccess W2985019967 @default.
- W2985019967 hasRelatedWork W144027527 @default.
- W2985019967 hasRelatedWork W1489796217 @default.
- W2985019967 hasRelatedWork W1838705720 @default.
- W2985019967 hasRelatedWork W1963802950 @default.
- W2985019967 hasRelatedWork W2023233205 @default.
- W2985019967 hasRelatedWork W2165372860 @default.
- W2985019967 hasRelatedWork W2181561723 @default.
- W2985019967 hasRelatedWork W2303680325 @default.
- W2985019967 hasRelatedWork W2324337765 @default.
- W2985019967 hasRelatedWork W2501213636 @default.
- W2985019967 hasRelatedWork W2583186796 @default.
- W2985019967 hasRelatedWork W2734868194 @default.
- W2985019967 hasRelatedWork W2979941289 @default.
- W2985019967 hasRelatedWork W3023143511 @default.
- W2985019967 hasRelatedWork W398996724 @default.
- W2985019967 hasRelatedWork W49128507 @default.
- W2985019967 hasRelatedWork W621513727 @default.
- W2985019967 hasRelatedWork W91645221 @default.
- W2985019967 hasRelatedWork W1771374775 @default.
- W2985019967 hasRelatedWork W3118598667 @default.
- W2985019967 isParatext "false" @default.
- W2985019967 isRetracted "false" @default.
- W2985019967 magId "2985019967" @default.
- W2985019967 workType "dissertation" @default.