Matches in SemOpenAlex for { <https://semopenalex.org/work/W2985214749> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2985214749 abstract "State-of-the-art singing voice separation is based on deep learning making use of CNN structures with skip connections (like U-Net model, Wave-U-Net model, or MSDENSELSTM). A key to the success of these models is the availability of a large amount of training data. In the following study, we are interested in singing voice separation for mono signals and will investigate into comparing the U-Net and the Wave-U-Net that are structurally similar, but work on different input representations. First, we report a few results on variations of the U-Net model. Second, we will discuss the potential of state of the art speech and music transformation algorithms for augmentation of existing data sets and demonstrate that the effect of these augmentations depends on the signal representations used by the model. The results demonstrate a considerable improvement due to the augmentation for both models. But pitch transposition is the most effective augmentation strategy for the U-Net model, while transposition, time stretching, and formant shifting have a much more balanced effect on the Wave-U-Net model. Finally, we compare the two models on the same dataset." @default.
- W2985214749 created "2019-11-22" @default.
- W2985214749 creator A5023093560 @default.
- W2985214749 creator A5063097936 @default.
- W2985214749 creator A5065828059 @default.
- W2985214749 date "2019-09-01" @default.
- W2985214749 modified "2023-09-30" @default.
- W2985214749 title "Improving singing voice separation using Deep U-Net and Wave-U-Net with data augmentation" @default.
- W2985214749 cites W122750681 @default.
- W2985214749 cites W2092233629 @default.
- W2985214749 cites W2116428736 @default.
- W2985214749 cites W2127851351 @default.
- W2985214749 cites W2145962650 @default.
- W2985214749 cites W2159898352 @default.
- W2985214749 cites W2166209411 @default.
- W2985214749 cites W2963751183 @default.
- W2985214749 doi "https://doi.org/10.23919/eusipco.2019.8902810" @default.
- W2985214749 hasPublicationYear "2019" @default.
- W2985214749 type Work @default.
- W2985214749 sameAs 2985214749 @default.
- W2985214749 citedByCount "13" @default.
- W2985214749 countsByYear W29852147492019 @default.
- W2985214749 countsByYear W29852147492021 @default.
- W2985214749 countsByYear W29852147492022 @default.
- W2985214749 crossrefType "proceedings-article" @default.
- W2985214749 hasAuthorship W2985214749A5023093560 @default.
- W2985214749 hasAuthorship W2985214749A5063097936 @default.
- W2985214749 hasAuthorship W2985214749A5065828059 @default.
- W2985214749 hasBestOaLocation W29852147496 @default.
- W2985214749 hasConcept C104317684 @default.
- W2985214749 hasConcept C108583219 @default.
- W2985214749 hasConcept C119857082 @default.
- W2985214749 hasConcept C121332964 @default.
- W2985214749 hasConcept C12455157 @default.
- W2985214749 hasConcept C14166107 @default.
- W2985214749 hasConcept C154945302 @default.
- W2985214749 hasConcept C158215666 @default.
- W2985214749 hasConcept C185592680 @default.
- W2985214749 hasConcept C204241405 @default.
- W2985214749 hasConcept C24890656 @default.
- W2985214749 hasConcept C2524010 @default.
- W2985214749 hasConcept C26517878 @default.
- W2985214749 hasConcept C2776061190 @default.
- W2985214749 hasConcept C2779581591 @default.
- W2985214749 hasConcept C28490314 @default.
- W2985214749 hasConcept C33923547 @default.
- W2985214749 hasConcept C38652104 @default.
- W2985214749 hasConcept C41008148 @default.
- W2985214749 hasConcept C44819458 @default.
- W2985214749 hasConcept C55493867 @default.
- W2985214749 hasConceptScore W2985214749C104317684 @default.
- W2985214749 hasConceptScore W2985214749C108583219 @default.
- W2985214749 hasConceptScore W2985214749C119857082 @default.
- W2985214749 hasConceptScore W2985214749C121332964 @default.
- W2985214749 hasConceptScore W2985214749C12455157 @default.
- W2985214749 hasConceptScore W2985214749C14166107 @default.
- W2985214749 hasConceptScore W2985214749C154945302 @default.
- W2985214749 hasConceptScore W2985214749C158215666 @default.
- W2985214749 hasConceptScore W2985214749C185592680 @default.
- W2985214749 hasConceptScore W2985214749C204241405 @default.
- W2985214749 hasConceptScore W2985214749C24890656 @default.
- W2985214749 hasConceptScore W2985214749C2524010 @default.
- W2985214749 hasConceptScore W2985214749C26517878 @default.
- W2985214749 hasConceptScore W2985214749C2776061190 @default.
- W2985214749 hasConceptScore W2985214749C2779581591 @default.
- W2985214749 hasConceptScore W2985214749C28490314 @default.
- W2985214749 hasConceptScore W2985214749C33923547 @default.
- W2985214749 hasConceptScore W2985214749C38652104 @default.
- W2985214749 hasConceptScore W2985214749C41008148 @default.
- W2985214749 hasConceptScore W2985214749C44819458 @default.
- W2985214749 hasConceptScore W2985214749C55493867 @default.
- W2985214749 hasLocation W29852147491 @default.
- W2985214749 hasLocation W29852147492 @default.
- W2985214749 hasLocation W29852147493 @default.
- W2985214749 hasLocation W29852147494 @default.
- W2985214749 hasLocation W29852147495 @default.
- W2985214749 hasLocation W29852147496 @default.
- W2985214749 hasOpenAccess W2985214749 @default.
- W2985214749 hasPrimaryLocation W29852147491 @default.
- W2985214749 hasRelatedWork W1980770795 @default.
- W2985214749 hasRelatedWork W2053207518 @default.
- W2985214749 hasRelatedWork W2058812541 @default.
- W2985214749 hasRelatedWork W2075905938 @default.
- W2985214749 hasRelatedWork W2111030185 @default.
- W2985214749 hasRelatedWork W2123169318 @default.
- W2985214749 hasRelatedWork W2921017930 @default.
- W2985214749 hasRelatedWork W4224861899 @default.
- W2985214749 hasRelatedWork W4297841449 @default.
- W2985214749 hasRelatedWork W85215284 @default.
- W2985214749 isParatext "false" @default.
- W2985214749 isRetracted "false" @default.
- W2985214749 magId "2985214749" @default.
- W2985214749 workType "article" @default.