Matches in SemOpenAlex for { <https://semopenalex.org/work/W2985702256> ?p ?o ?g. }
- W2985702256 endingPage "101746" @default.
- W2985702256 startingPage "101746" @default.
- W2985702256 abstract "In this paper, the urinary bladder cancer diagnostic method which is based on Multi-Layer Perceptron and Laplacian edge detector is presented. The aim of this paper is to investigate the implementation possibility of a simpler method (Multi-Layer Perceptron) alongside commonly used methods, such as Deep Learning Convolutional Neural Networks, for the urinary bladder cancer detection. The dataset used for this research consisted of 1997 images of bladder cancer and 986 images of non-cancer tissue. The results of the conducted research showed that using Multi-Layer Perceptron trained and tested with images pre-processed with Laplacian edge detector are achieving AUC value up to 0.99. When different image sizes are compared it can be seen that the best results are achieved if 50×50 and 100×100 images were used." @default.
- W2985702256 created "2019-11-22" @default.
- W2985702256 creator A5005957890 @default.
- W2985702256 creator A5014229671 @default.
- W2985702256 creator A5070800868 @default.
- W2985702256 creator A5078677385 @default.
- W2985702256 date "2020-01-01" @default.
- W2985702256 modified "2023-10-05" @default.
- W2985702256 title "Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis" @default.
- W2985702256 cites W1501213224 @default.
- W2985702256 cites W1976208692 @default.
- W2985702256 cites W1993911035 @default.
- W2985702256 cites W1996681001 @default.
- W2985702256 cites W2005126631 @default.
- W2985702256 cites W2007793895 @default.
- W2985702256 cites W2023276550 @default.
- W2985702256 cites W2023381609 @default.
- W2985702256 cites W2044029912 @default.
- W2985702256 cites W2044097773 @default.
- W2985702256 cites W2051611225 @default.
- W2985702256 cites W2061079740 @default.
- W2985702256 cites W2063217105 @default.
- W2985702256 cites W2068523052 @default.
- W2985702256 cites W2074502199 @default.
- W2985702256 cites W2075515489 @default.
- W2985702256 cites W2081133344 @default.
- W2985702256 cites W2086821841 @default.
- W2985702256 cites W2099529965 @default.
- W2985702256 cites W2101447395 @default.
- W2985702256 cites W2116774060 @default.
- W2985702256 cites W2128552148 @default.
- W2985702256 cites W2139577851 @default.
- W2985702256 cites W2139945672 @default.
- W2985702256 cites W2148532893 @default.
- W2985702256 cites W2153231397 @default.
- W2985702256 cites W2155502808 @default.
- W2985702256 cites W2158698691 @default.
- W2985702256 cites W2162130153 @default.
- W2985702256 cites W2290238862 @default.
- W2985702256 cites W2333982127 @default.
- W2985702256 cites W2403227346 @default.
- W2985702256 cites W2413943978 @default.
- W2985702256 cites W2434241183 @default.
- W2985702256 cites W2527699128 @default.
- W2985702256 cites W2581082771 @default.
- W2985702256 cites W2582220857 @default.
- W2985702256 cites W2584113350 @default.
- W2985702256 cites W2603308797 @default.
- W2985702256 cites W2620578070 @default.
- W2985702256 cites W2624699030 @default.
- W2985702256 cites W2625869432 @default.
- W2985702256 cites W2724961947 @default.
- W2985702256 cites W2751118187 @default.
- W2985702256 cites W2767268357 @default.
- W2985702256 cites W2768138179 @default.
- W2985702256 cites W2773963615 @default.
- W2985702256 cites W2803723485 @default.
- W2985702256 cites W2888549995 @default.
- W2985702256 cites W2895015930 @default.
- W2985702256 cites W2900790612 @default.
- W2985702256 cites W2901899783 @default.
- W2985702256 cites W2902617323 @default.
- W2985702256 cites W2909290938 @default.
- W2985702256 cites W2912973297 @default.
- W2985702256 cites W2947079397 @default.
- W2985702256 cites W2947674424 @default.
- W2985702256 cites W2954679691 @default.
- W2985702256 cites W2962408126 @default.
- W2985702256 cites W3099155372 @default.
- W2985702256 cites W3215186461 @default.
- W2985702256 doi "https://doi.org/10.1016/j.artmed.2019.101746" @default.
- W2985702256 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31980088" @default.
- W2985702256 hasPublicationYear "2020" @default.
- W2985702256 type Work @default.
- W2985702256 sameAs 2985702256 @default.
- W2985702256 citedByCount "80" @default.
- W2985702256 countsByYear W29857022562019 @default.
- W2985702256 countsByYear W29857022562020 @default.
- W2985702256 countsByYear W29857022562021 @default.
- W2985702256 countsByYear W29857022562022 @default.
- W2985702256 countsByYear W29857022562023 @default.
- W2985702256 crossrefType "journal-article" @default.
- W2985702256 hasAuthorship W2985702256A5005957890 @default.
- W2985702256 hasAuthorship W2985702256A5014229671 @default.
- W2985702256 hasAuthorship W2985702256A5070800868 @default.
- W2985702256 hasAuthorship W2985702256A5078677385 @default.
- W2985702256 hasBestOaLocation W29857022561 @default.
- W2985702256 hasConcept C121608353 @default.
- W2985702256 hasConcept C126322002 @default.
- W2985702256 hasConcept C153180895 @default.
- W2985702256 hasConcept C154945302 @default.
- W2985702256 hasConcept C162307627 @default.
- W2985702256 hasConcept C171250308 @default.
- W2985702256 hasConcept C179717631 @default.
- W2985702256 hasConcept C192562407 @default.
- W2985702256 hasConcept C2779227376 @default.
- W2985702256 hasConcept C2780352672 @default.
- W2985702256 hasConcept C41008148 @default.