Matches in SemOpenAlex for { <https://semopenalex.org/work/W2985911094> ?p ?o ?g. }
- W2985911094 endingPage "2549" @default.
- W2985911094 startingPage "2549" @default.
- W2985911094 abstract "Wetland ecosystems are important resources, providing great economic benefits for surrounding communities. In this study, we developed a new stress indicator called “Rapidly Assessed Wetlands Stress Index” (RAWSI) by combining several natural and anthropogenic stressors of wetlands in Delaware, in the United States. We compared two machine-learning algorithms, support vector machine (SVM) and random forest (RF), to quantify wetland stress by classifying satellite images from Landsat 8 and Sentinel-1 Synthetic Aperture Radar (SAR). An accuracy assessment showed that the combination of Landsat 8 and Sentinel SAR data had the highest overall accuracy (93.7%) when used with an RF classifier. In addition to the land-cover classification, a trend analysis of the normalized difference vegetation index (NDVI) calculated from Landsat images during 2004–2018 was used to assess changes in healthy vegetation. We also calculated the stream sinuosity to assess human alterations to hydrology. We then used these three metrics to develop RAWSI, and to quantify and map wetland stress due to human alteration of the landscape. Hot-spot analysis using Global Moran’s I and Getis-Ord Gi* identified several statistically significant hot spots (high stress) in forested wetlands and cold spots (low values) in non-forested wetlands. This information can be utilized to identify wetland areas in need of further regulation, with implications in environmental planning and policy decisions." @default.
- W2985911094 created "2019-11-22" @default.
- W2985911094 creator A5071030696 @default.
- W2985911094 creator A5073589082 @default.
- W2985911094 date "2019-10-30" @default.
- W2985911094 modified "2023-10-12" @default.
- W2985911094 title "A Rapidly Assessed Wetland Stress Index (RAWSI) Using Landsat 8 and Sentinel-1 Radar Data" @default.
- W2985911094 cites W1556958625 @default.
- W2985911094 cites W1574117641 @default.
- W2985911094 cites W1596717185 @default.
- W2985911094 cites W1606999916 @default.
- W2985911094 cites W1610015390 @default.
- W2985911094 cites W1797580880 @default.
- W2985911094 cites W1894641570 @default.
- W2985911094 cites W1903469757 @default.
- W2985911094 cites W1963573411 @default.
- W2985911094 cites W1964672965 @default.
- W2985911094 cites W1968378717 @default.
- W2985911094 cites W1969732403 @default.
- W2985911094 cites W1971637299 @default.
- W2985911094 cites W1971832606 @default.
- W2985911094 cites W1978449773 @default.
- W2985911094 cites W1982973901 @default.
- W2985911094 cites W1985900511 @default.
- W2985911094 cites W1998613218 @default.
- W2985911094 cites W1998651992 @default.
- W2985911094 cites W2001510610 @default.
- W2985911094 cites W2008103213 @default.
- W2985911094 cites W2011082647 @default.
- W2985911094 cites W2019409357 @default.
- W2985911094 cites W2026131661 @default.
- W2985911094 cites W2039065141 @default.
- W2985911094 cites W2043075830 @default.
- W2985911094 cites W2053154970 @default.
- W2985911094 cites W2072677073 @default.
- W2985911094 cites W2087869667 @default.
- W2985911094 cites W2102533300 @default.
- W2985911094 cites W2104301422 @default.
- W2985911094 cites W2112716550 @default.
- W2985911094 cites W2116935344 @default.
- W2985911094 cites W2117706739 @default.
- W2985911094 cites W2121958618 @default.
- W2985911094 cites W2131586477 @default.
- W2985911094 cites W2136873865 @default.
- W2985911094 cites W2138973222 @default.
- W2985911094 cites W2139086914 @default.
- W2985911094 cites W2150700542 @default.
- W2985911094 cites W2150949716 @default.
- W2985911094 cites W2161548576 @default.
- W2985911094 cites W2166907877 @default.
- W2985911094 cites W2193879634 @default.
- W2985911094 cites W2288667372 @default.
- W2985911094 cites W2507912271 @default.
- W2985911094 cites W2578636382 @default.
- W2985911094 cites W2587456632 @default.
- W2985911094 cites W2591129009 @default.
- W2985911094 cites W2592532736 @default.
- W2985911094 cites W2604409186 @default.
- W2985911094 cites W2604870469 @default.
- W2985911094 cites W2621021710 @default.
- W2985911094 cites W2725897987 @default.
- W2985911094 cites W2746485780 @default.
- W2985911094 cites W2766727660 @default.
- W2985911094 cites W2772365113 @default.
- W2985911094 cites W2776146695 @default.
- W2985911094 cites W2776644571 @default.
- W2985911094 cites W2829356528 @default.
- W2985911094 cites W2902380808 @default.
- W2985911094 cites W2911964244 @default.
- W2985911094 cites W2913290086 @default.
- W2985911094 cites W2924359790 @default.
- W2985911094 cites W4255118026 @default.
- W2985911094 doi "https://doi.org/10.3390/rs11212549" @default.
- W2985911094 hasPublicationYear "2019" @default.
- W2985911094 type Work @default.
- W2985911094 sameAs 2985911094 @default.
- W2985911094 citedByCount "10" @default.
- W2985911094 countsByYear W29859110942020 @default.
- W2985911094 countsByYear W29859110942021 @default.
- W2985911094 countsByYear W29859110942022 @default.
- W2985911094 countsByYear W29859110942023 @default.
- W2985911094 crossrefType "journal-article" @default.
- W2985911094 hasAuthorship W2985911094A5071030696 @default.
- W2985911094 hasAuthorship W2985911094A5073589082 @default.
- W2985911094 hasBestOaLocation W29859110941 @default.
- W2985911094 hasConcept C100970517 @default.
- W2985911094 hasConcept C119857082 @default.
- W2985911094 hasConcept C127313418 @default.
- W2985911094 hasConcept C132651083 @default.
- W2985911094 hasConcept C142724271 @default.
- W2985911094 hasConcept C1549246 @default.
- W2985911094 hasConcept C169258074 @default.
- W2985911094 hasConcept C187320778 @default.
- W2985911094 hasConcept C18903297 @default.
- W2985911094 hasConcept C205649164 @default.
- W2985911094 hasConcept C2776133958 @default.
- W2985911094 hasConcept C2778102629 @default.
- W2985911094 hasConcept C2780648208 @default.