Matches in SemOpenAlex for { <https://semopenalex.org/work/W2986021933> ?p ?o ?g. }
- W2986021933 endingPage "158" @default.
- W2986021933 startingPage "152" @default.
- W2986021933 abstract "Background Deep learning-based auto-segmented contours (DC) aim to alleviate labour intensive contouring of organs at risk (OAR) and clinical target volumes (CTV). Most previous DC validation studies have a limited number of expert observers for comparison and/or use a validation dataset related to the training dataset. We determine if DC models are comparable to Radiation Oncologist (RO) inter-observer variability on an independent dataset. Methods Expert contours (EC) were created by multiple ROs for central nervous system (CNS), head and neck (H&N), and prostate radiotherapy (RT) OARs and CTVs. DCs were generated using deep learning-based auto-segmentation software trained by a single RO on publicly available data. Contours were compared using Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD). Results Sixty planning CT scans had 2–4 ECs, for a total of 60 CNS, 53 H&N, and 50 prostate RT contour sets. The mean DC and EC contouring times were 0.4 vs 7.7 min for CNS, 0.6 vs 26.6 min for H&N, and 0.4 vs 21.3 min for prostate RT contours. There were minimal differences in DSC and 95% HD involving DCs for OAR comparisons, but more noticeable differences for CTV comparisons. Conclusions The accuracy of DCs trained by a single RO is comparable to expert inter-observer variability for the RT planning contours in this study. Use of deep learning-based auto-segmentation in clinical practice will likely lead to significant benefits to RT planning workflow and resources." @default.
- W2986021933 created "2019-11-22" @default.
- W2986021933 creator A5004439881 @default.
- W2986021933 creator A5004441174 @default.
- W2986021933 creator A5018036171 @default.
- W2986021933 creator A5037986859 @default.
- W2986021933 creator A5038305305 @default.
- W2986021933 creator A5046984066 @default.
- W2986021933 creator A5054521914 @default.
- W2986021933 creator A5061953171 @default.
- W2986021933 creator A5068626181 @default.
- W2986021933 date "2020-03-01" @default.
- W2986021933 modified "2023-10-14" @default.
- W2986021933 title "Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning" @default.
- W2986021933 cites W1982668309 @default.
- W2986021933 cites W2083927153 @default.
- W2986021933 cites W2106971583 @default.
- W2986021933 cites W2107595635 @default.
- W2986021933 cites W2112884386 @default.
- W2986021933 cites W2116885552 @default.
- W2986021933 cites W2119018166 @default.
- W2986021933 cites W2148754315 @default.
- W2986021933 cites W2560725027 @default.
- W2986021933 cites W2600642189 @default.
- W2986021933 cites W2622196022 @default.
- W2986021933 cites W2757454662 @default.
- W2986021933 cites W2773960327 @default.
- W2986021933 cites W2792155504 @default.
- W2986021933 cites W2799639209 @default.
- W2986021933 doi "https://doi.org/10.1016/j.radonc.2019.10.019" @default.
- W2986021933 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31812930" @default.
- W2986021933 hasPublicationYear "2020" @default.
- W2986021933 type Work @default.
- W2986021933 sameAs 2986021933 @default.
- W2986021933 citedByCount "121" @default.
- W2986021933 countsByYear W29860219332018 @default.
- W2986021933 countsByYear W29860219332020 @default.
- W2986021933 countsByYear W29860219332021 @default.
- W2986021933 countsByYear W29860219332022 @default.
- W2986021933 countsByYear W29860219332023 @default.
- W2986021933 crossrefType "journal-article" @default.
- W2986021933 hasAuthorship W2986021933A5004439881 @default.
- W2986021933 hasAuthorship W2986021933A5004441174 @default.
- W2986021933 hasAuthorship W2986021933A5018036171 @default.
- W2986021933 hasAuthorship W2986021933A5037986859 @default.
- W2986021933 hasAuthorship W2986021933A5038305305 @default.
- W2986021933 hasAuthorship W2986021933A5046984066 @default.
- W2986021933 hasAuthorship W2986021933A5054521914 @default.
- W2986021933 hasAuthorship W2986021933A5061953171 @default.
- W2986021933 hasAuthorship W2986021933A5068626181 @default.
- W2986021933 hasConcept C108583219 @default.
- W2986021933 hasConcept C121332964 @default.
- W2986021933 hasConcept C121684516 @default.
- W2986021933 hasConcept C126838900 @default.
- W2986021933 hasConcept C141898687 @default.
- W2986021933 hasConcept C153180895 @default.
- W2986021933 hasConcept C154945302 @default.
- W2986021933 hasConcept C19527891 @default.
- W2986021933 hasConcept C201645570 @default.
- W2986021933 hasConcept C2779104521 @default.
- W2986021933 hasConcept C2780704645 @default.
- W2986021933 hasConcept C2989005 @default.
- W2986021933 hasConcept C41008148 @default.
- W2986021933 hasConcept C509974204 @default.
- W2986021933 hasConcept C62520636 @default.
- W2986021933 hasConcept C71924100 @default.
- W2986021933 hasConcept C89600930 @default.
- W2986021933 hasConceptScore W2986021933C108583219 @default.
- W2986021933 hasConceptScore W2986021933C121332964 @default.
- W2986021933 hasConceptScore W2986021933C121684516 @default.
- W2986021933 hasConceptScore W2986021933C126838900 @default.
- W2986021933 hasConceptScore W2986021933C141898687 @default.
- W2986021933 hasConceptScore W2986021933C153180895 @default.
- W2986021933 hasConceptScore W2986021933C154945302 @default.
- W2986021933 hasConceptScore W2986021933C19527891 @default.
- W2986021933 hasConceptScore W2986021933C201645570 @default.
- W2986021933 hasConceptScore W2986021933C2779104521 @default.
- W2986021933 hasConceptScore W2986021933C2780704645 @default.
- W2986021933 hasConceptScore W2986021933C2989005 @default.
- W2986021933 hasConceptScore W2986021933C41008148 @default.
- W2986021933 hasConceptScore W2986021933C509974204 @default.
- W2986021933 hasConceptScore W2986021933C62520636 @default.
- W2986021933 hasConceptScore W2986021933C71924100 @default.
- W2986021933 hasConceptScore W2986021933C89600930 @default.
- W2986021933 hasLocation W29860219331 @default.
- W2986021933 hasOpenAccess W2986021933 @default.
- W2986021933 hasPrimaryLocation W29860219331 @default.
- W2986021933 hasRelatedWork W2057960324 @default.
- W2986021933 hasRelatedWork W2410998211 @default.
- W2986021933 hasRelatedWork W2762363380 @default.
- W2986021933 hasRelatedWork W3081606947 @default.
- W2986021933 hasRelatedWork W3139744780 @default.
- W2986021933 hasRelatedWork W3206966550 @default.
- W2986021933 hasRelatedWork W4220897170 @default.
- W2986021933 hasRelatedWork W4313321401 @default.
- W2986021933 hasRelatedWork W4318992034 @default.
- W2986021933 hasRelatedWork W4378697743 @default.
- W2986021933 hasVolume "144" @default.