Matches in SemOpenAlex for { <https://semopenalex.org/work/W2986207493> ?p ?o ?g. }
- W2986207493 endingPage "134570" @default.
- W2986207493 startingPage "134570" @default.
- W2986207493 abstract "Quantification of the exposure of urban residents to ultrafine particle number concentrations (UFP) is challenging due to its high spatial and temporal variability. Hence, statistical models, e.g. generalized additive models (GAM), may be used to estimate time series or spatial characteristics of UFP. The GAM approach allows the representation of non-linear relations of a response variable with explanatory variables without the need to pre-define model functions. Up to now, GAMs were usually fitted to UFP data from a single site or from mobile measurement campaigns with limited temporal coverage. In this study, GAMs were used to determine UFP, accumulation mode particle (ACC) and total number concentration (TNC) at five urban sites in the cities of Leipzig and Dresden, Germany for the period 2011–2013. As explanatory variables, reanalysis data sets of meteorological quantities, urban geometry and traffic volume data were evaluated. Variables causing concurvity, which is the equivalent to collinearity in non-linear model approaches, were neglected to guarantee the interpretability of the final models. The models were then validated in a ten-fold cross-validation approach. The final models contained smooth functions for the building surface fraction, planetary boundary layer height, traffic volume, air temperature, wind direction, atmospheric pressure, relative humidity, global radiation and precipitation. Adjusted coefficients of determination (R2adj.) for the final models were R2adj. = 0.44 for UFP, R2adj. = 0.51 for ACC and R2adj. = 0.48 for TNC. Coefficients of determination of the cross-validation were in a similar range (0.44 for UFP, 0.51 for ACC, 0.49 for TNC). Finally, our study shows that GAMs are able to represent important processes that contribute to the particle number concentration from the smooth functions, i.e. emission, dilution, nucleation, deposition and long-range transport." @default.
- W2986207493 created "2019-11-22" @default.
- W2986207493 creator A5007461873 @default.
- W2986207493 creator A5011793407 @default.
- W2986207493 creator A5037990670 @default.
- W2986207493 creator A5052166339 @default.
- W2986207493 date "2020-02-01" @default.
- W2986207493 modified "2023-10-17" @default.
- W2986207493 title "Statistical modelling of roadside and urban background ultrafine and accumulation mode particle number concentrations using generalized additive models" @default.
- W2986207493 cites W1513919779 @default.
- W2986207493 cites W1977013201 @default.
- W2986207493 cites W1984613928 @default.
- W2986207493 cites W1987491704 @default.
- W2986207493 cites W1990505747 @default.
- W2986207493 cites W1997029781 @default.
- W2986207493 cites W1997448969 @default.
- W2986207493 cites W1999419809 @default.
- W2986207493 cites W2002743879 @default.
- W2986207493 cites W2010003285 @default.
- W2986207493 cites W2011654941 @default.
- W2986207493 cites W2014268722 @default.
- W2986207493 cites W2016478487 @default.
- W2986207493 cites W2017372646 @default.
- W2986207493 cites W2027055298 @default.
- W2986207493 cites W2027507692 @default.
- W2986207493 cites W2034446988 @default.
- W2986207493 cites W2035930426 @default.
- W2986207493 cites W2039384349 @default.
- W2986207493 cites W2054510637 @default.
- W2986207493 cites W2065457845 @default.
- W2986207493 cites W2066387723 @default.
- W2986207493 cites W2078732381 @default.
- W2986207493 cites W2081804203 @default.
- W2986207493 cites W2087972273 @default.
- W2986207493 cites W2089520835 @default.
- W2986207493 cites W2095222301 @default.
- W2986207493 cites W2099372171 @default.
- W2986207493 cites W2102158401 @default.
- W2986207493 cites W2107209395 @default.
- W2986207493 cites W2111570465 @default.
- W2986207493 cites W2111700869 @default.
- W2986207493 cites W2117801068 @default.
- W2986207493 cites W2122035372 @default.
- W2986207493 cites W2124721375 @default.
- W2986207493 cites W2126294809 @default.
- W2986207493 cites W2129444550 @default.
- W2986207493 cites W2137381866 @default.
- W2986207493 cites W2137518022 @default.
- W2986207493 cites W2140282454 @default.
- W2986207493 cites W2147172101 @default.
- W2986207493 cites W2150751323 @default.
- W2986207493 cites W2151233539 @default.
- W2986207493 cites W2160597133 @default.
- W2986207493 cites W2168114717 @default.
- W2986207493 cites W2170739497 @default.
- W2986207493 cites W2177898749 @default.
- W2986207493 cites W2325295718 @default.
- W2986207493 cites W2326367333 @default.
- W2986207493 cites W2558693356 @default.
- W2986207493 cites W2580545594 @default.
- W2986207493 cites W2591459739 @default.
- W2986207493 cites W2605478633 @default.
- W2986207493 cites W2605550732 @default.
- W2986207493 cites W2620300958 @default.
- W2986207493 cites W2755884245 @default.
- W2986207493 cites W2762097185 @default.
- W2986207493 cites W2767216082 @default.
- W2986207493 cites W2793981022 @default.
- W2986207493 cites W2802082502 @default.
- W2986207493 cites W2887048036 @default.
- W2986207493 cites W2892158917 @default.
- W2986207493 cites W2900379721 @default.
- W2986207493 cites W2906283316 @default.
- W2986207493 cites W3192880971 @default.
- W2986207493 doi "https://doi.org/10.1016/j.scitotenv.2019.134570" @default.
- W2986207493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31753501" @default.
- W2986207493 hasPublicationYear "2020" @default.
- W2986207493 type Work @default.
- W2986207493 sameAs 2986207493 @default.
- W2986207493 citedByCount "13" @default.
- W2986207493 countsByYear W29862074932020 @default.
- W2986207493 countsByYear W29862074932021 @default.
- W2986207493 countsByYear W29862074932022 @default.
- W2986207493 countsByYear W29862074932023 @default.
- W2986207493 crossrefType "journal-article" @default.
- W2986207493 hasAuthorship W2986207493A5007461873 @default.
- W2986207493 hasAuthorship W2986207493A5011793407 @default.
- W2986207493 hasAuthorship W2986207493A5037990670 @default.
- W2986207493 hasAuthorship W2986207493A5052166339 @default.
- W2986207493 hasConcept C105795698 @default.
- W2986207493 hasConcept C106192678 @default.
- W2986207493 hasConcept C121332964 @default.
- W2986207493 hasConcept C127413603 @default.
- W2986207493 hasConcept C146978453 @default.
- W2986207493 hasConcept C150032891 @default.
- W2986207493 hasConcept C153294291 @default.
- W2986207493 hasConcept C158960510 @default.
- W2986207493 hasConcept C161067210 @default.