Matches in SemOpenAlex for { <https://semopenalex.org/work/W2986328536> ?p ?o ?g. }
- W2986328536 endingPage "100618" @default.
- W2986328536 startingPage "100618" @default.
- W2986328536 abstract "In recent years, the scientific community has witnessed an explosion in the use of pattern recognition algorithms. However, little attention has been paid to the tasks preceding the execution of these algorithms, the preprocessing activities. One of these tasks is dimensionality reduction, in which a subset of features that improves the performance of the mining algorithm is located and algorithm's runtime is reduced. Although there are many methods that address the problems in pattern recognition algorithms, effective solutions still need to be researched and explored. Hence, this paper aims to address three of the issues surrounding these algorithms. First, we propose adapting a promising meta-heuristic called biased random-key genetic algorithm, which considers a random initial population construction. We call this algorithm as unsupervised feature selection by biased random-key genetic algorithm I. Next, we propose an approach for building the initial population partly in a deterministic way. Thus, we applied this idea in two algorithms, named unsupervised feature selection by particle swarm optimization and unsupervised feature selection by biased random-key genetic algorithm II. Finally, we simulated different datasets to study the effects of relevant and irrelevant attributes, and of noisy and missing data on the performance of the algorithms. After the Wilcoxon rank-sum test, we can state that the proposed algorithms outperform all other methods in different datasets. It was also observed that the construction of the initial population in a partially deterministic way contributed to the better performance. It should be noted that some methods are more sensitive to noisy and missing data than others, as well as to relevant and irrelevant attributes. • Particle swarm optimization and biased random-key genetic algorithms are proposed. • It is investigated how the construction of the initial population, as well as the missing and noisy data, implies the performance of the algorithms. • Ten simulated data sets are used containing relevant and irrelevant attributes, as well as different percentages of missing and noisy data. • An exhaustive computational and statistical evaluation is carried out. • The proposed approaches outperformed other methods." @default.
- W2986328536 created "2019-11-22" @default.
- W2986328536 creator A5016121397 @default.
- W2986328536 creator A5068313083 @default.
- W2986328536 date "2020-02-01" @default.
- W2986328536 modified "2023-10-08" @default.
- W2986328536 title "Unsupervised feature selection based on bio-inspired approaches" @default.
- W2986328536 cites W1485435901 @default.
- W2986328536 cites W1493042895 @default.
- W2986328536 cites W1575275310 @default.
- W2986328536 cites W1963763787 @default.
- W2986328536 cites W1964042173 @default.
- W2986328536 cites W1964724001 @default.
- W2986328536 cites W1968523955 @default.
- W2986328536 cites W1981970233 @default.
- W2986328536 cites W1982789392 @default.
- W2986328536 cites W1987602810 @default.
- W2986328536 cites W2009743158 @default.
- W2986328536 cites W2014915963 @default.
- W2986328536 cites W2015553917 @default.
- W2986328536 cites W2017337590 @default.
- W2986328536 cites W2033403400 @default.
- W2986328536 cites W2040884411 @default.
- W2986328536 cites W2043559721 @default.
- W2986328536 cites W2044347520 @default.
- W2986328536 cites W2044436985 @default.
- W2986328536 cites W2048148787 @default.
- W2986328536 cites W2051111591 @default.
- W2986328536 cites W2052064561 @default.
- W2986328536 cites W2060542593 @default.
- W2986328536 cites W2070154551 @default.
- W2986328536 cites W2074148701 @default.
- W2986328536 cites W2078841894 @default.
- W2986328536 cites W2089165876 @default.
- W2986328536 cites W2095552336 @default.
- W2986328536 cites W2108343180 @default.
- W2986328536 cites W2113890143 @default.
- W2986328536 cites W2131113792 @default.
- W2986328536 cites W2138652284 @default.
- W2986328536 cites W2149772057 @default.
- W2986328536 cites W2153386665 @default.
- W2986328536 cites W2161126907 @default.
- W2986328536 cites W2167101736 @default.
- W2986328536 cites W2169620189 @default.
- W2986328536 cites W2170428215 @default.
- W2986328536 cites W2282947270 @default.
- W2986328536 cites W2343420905 @default.
- W2986328536 cites W2404378900 @default.
- W2986328536 cites W251578582 @default.
- W2986328536 cites W2516938563 @default.
- W2986328536 cites W2588659412 @default.
- W2986328536 cites W2593727049 @default.
- W2986328536 cites W2598351993 @default.
- W2986328536 cites W2699648269 @default.
- W2986328536 cites W2727422487 @default.
- W2986328536 cites W2733722625 @default.
- W2986328536 cites W2735033997 @default.
- W2986328536 cites W2753434909 @default.
- W2986328536 cites W2753846453 @default.
- W2986328536 cites W2768498276 @default.
- W2986328536 cites W2772326905 @default.
- W2986328536 cites W2792422514 @default.
- W2986328536 cites W2793300888 @default.
- W2986328536 cites W2794135378 @default.
- W2986328536 cites W2800459992 @default.
- W2986328536 cites W2809174326 @default.
- W2986328536 cites W2811286755 @default.
- W2986328536 cites W3162273152 @default.
- W2986328536 cites W4238957295 @default.
- W2986328536 cites W2004338242 @default.
- W2986328536 doi "https://doi.org/10.1016/j.swevo.2019.100618" @default.
- W2986328536 hasPublicationYear "2020" @default.
- W2986328536 type Work @default.
- W2986328536 sameAs 2986328536 @default.
- W2986328536 citedByCount "8" @default.
- W2986328536 countsByYear W29863285362020 @default.
- W2986328536 countsByYear W29863285362021 @default.
- W2986328536 countsByYear W29863285362022 @default.
- W2986328536 countsByYear W29863285362023 @default.
- W2986328536 crossrefType "journal-article" @default.
- W2986328536 hasAuthorship W2986328536A5016121397 @default.
- W2986328536 hasAuthorship W2986328536A5068313083 @default.
- W2986328536 hasConcept C111030470 @default.
- W2986328536 hasConcept C119857082 @default.
- W2986328536 hasConcept C122507166 @default.
- W2986328536 hasConcept C124101348 @default.
- W2986328536 hasConcept C138885662 @default.
- W2986328536 hasConcept C144024400 @default.
- W2986328536 hasConcept C148483581 @default.
- W2986328536 hasConcept C149923435 @default.
- W2986328536 hasConcept C153180895 @default.
- W2986328536 hasConcept C154945302 @default.
- W2986328536 hasConcept C173801870 @default.
- W2986328536 hasConcept C26517878 @default.
- W2986328536 hasConcept C2776401178 @default.
- W2986328536 hasConcept C2908647359 @default.
- W2986328536 hasConcept C34736171 @default.
- W2986328536 hasConcept C38652104 @default.