Matches in SemOpenAlex for { <https://semopenalex.org/work/W2986635260> ?p ?o ?g. }
- W2986635260 endingPage "105110" @default.
- W2986635260 startingPage "105110" @default.
- W2986635260 abstract "For cerebrovascular segmentation from time-of-flight (TOF) magnetic resonance angiography (MRA), the focused issues are segmentation accuracy, vascular network coverage ratio, and cerebral artery and vein (CA/CV) separation. Therefore, cerebral artery segmentation is a challenging work, while a complete solution is lacking so far. The preprocessing of skull-stripping and Hessian-based feature extraction is first implemented to acquire an indirect prior knowledge of vascular distribution and shape. Then, a novel intensity- and shape-based Markov statistical modeling is proposed for complete cerebrovascular segmentation, where our low-level process employs a Gaussian mixture model to fit the intensity histogram of the skull-stripped TOF-MRA data, while our high-level process employs the vascular shape prior to construct the energy function. To regularize the individual data processes, Markov regularization parameter is automatically estimated by using a machine-learning algorithm. Further, cerebral artery and vein (CA/CV) separation is explored with a series of morphological logic operations, which are based on a direct priori knowledge on the relationship of arteriovenous topology and brain tissues in between TOF-MRA and MR-T1. We employed 109 sets of public datasets from MIDAS for qualitative and quantitative assessment. The Dice similarity coefficient, false negative rate (FNR), and false positive rate (FPR) of 0.933, 0.158, and 0.091% on average, as well as CA/CV separation results with the agreement, FNR, and FPR of 0.976, 0.041, and 0.022 on average. For clinical visual assessment, our methods can segment various sizes of the vessel in different contrast region, especially performs better on vessels of small size in low contrast region. Our methods obtained satisfying results in visual and quantitative evaluation. The proposed method is capable of accurate cerebrovascular segmentation and efficient CA/CV separation. Further, it can stimulate valuable clinical applications on the computer-assisted cerebrovascular intervention according to the neurosurgeon's recommendation." @default.
- W2986635260 created "2019-11-22" @default.
- W2986635260 creator A5014692354 @default.
- W2986635260 creator A5015525872 @default.
- W2986635260 creator A5031315906 @default.
- W2986635260 creator A5032775389 @default.
- W2986635260 creator A5055397380 @default.
- W2986635260 date "2020-04-01" @default.
- W2986635260 modified "2023-10-16" @default.
- W2986635260 title "Statistical modeling and knowledge-based segmentation of cerebral artery based on TOF-MRA and MR-T1" @default.
- W2986635260 cites W1973547747 @default.
- W2986635260 cites W1982952945 @default.
- W2986635260 cites W1989222601 @default.
- W2986635260 cites W1993804559 @default.
- W2986635260 cites W1994132205 @default.
- W2986635260 cites W2004520467 @default.
- W2986635260 cites W2012439062 @default.
- W2986635260 cites W2014277578 @default.
- W2986635260 cites W2060091892 @default.
- W2986635260 cites W2060363194 @default.
- W2986635260 cites W2074347739 @default.
- W2986635260 cites W2095368568 @default.
- W2986635260 cites W2105230619 @default.
- W2986635260 cites W2117935664 @default.
- W2986635260 cites W2121913681 @default.
- W2986635260 cites W2141104002 @default.
- W2986635260 cites W2168005337 @default.
- W2986635260 cites W2170796484 @default.
- W2986635260 cites W2213701027 @default.
- W2986635260 cites W2244003928 @default.
- W2986635260 cites W2334170987 @default.
- W2986635260 cites W2345716184 @default.
- W2986635260 cites W2550957658 @default.
- W2986635260 cites W2751786226 @default.
- W2986635260 cites W2753761202 @default.
- W2986635260 cites W2767270216 @default.
- W2986635260 cites W2791117644 @default.
- W2986635260 cites W279161287 @default.
- W2986635260 cites W2900358497 @default.
- W2986635260 cites W2907473150 @default.
- W2986635260 cites W2977883299 @default.
- W2986635260 doi "https://doi.org/10.1016/j.cmpb.2019.105110" @default.
- W2986635260 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31751871" @default.
- W2986635260 hasPublicationYear "2020" @default.
- W2986635260 type Work @default.
- W2986635260 sameAs 2986635260 @default.
- W2986635260 citedByCount "9" @default.
- W2986635260 countsByYear W29866352602020 @default.
- W2986635260 countsByYear W29866352602021 @default.
- W2986635260 countsByYear W29866352602022 @default.
- W2986635260 countsByYear W29866352602023 @default.
- W2986635260 crossrefType "journal-article" @default.
- W2986635260 hasAuthorship W2986635260A5014692354 @default.
- W2986635260 hasAuthorship W2986635260A5015525872 @default.
- W2986635260 hasAuthorship W2986635260A5031315906 @default.
- W2986635260 hasAuthorship W2986635260A5032775389 @default.
- W2986635260 hasAuthorship W2986635260A5055397380 @default.
- W2986635260 hasBestOaLocation W29866352601 @default.
- W2986635260 hasConcept C120665830 @default.
- W2986635260 hasConcept C121332964 @default.
- W2986635260 hasConcept C124504099 @default.
- W2986635260 hasConcept C126838900 @default.
- W2986635260 hasConcept C143409427 @default.
- W2986635260 hasConcept C153180895 @default.
- W2986635260 hasConcept C154945302 @default.
- W2986635260 hasConcept C163892561 @default.
- W2986635260 hasConcept C203616005 @default.
- W2986635260 hasConcept C2778212899 @default.
- W2986635260 hasConcept C28826006 @default.
- W2986635260 hasConcept C31972630 @default.
- W2986635260 hasConcept C33923547 @default.
- W2986635260 hasConcept C41008148 @default.
- W2986635260 hasConcept C65185188 @default.
- W2986635260 hasConcept C71924100 @default.
- W2986635260 hasConcept C89600930 @default.
- W2986635260 hasConceptScore W2986635260C120665830 @default.
- W2986635260 hasConceptScore W2986635260C121332964 @default.
- W2986635260 hasConceptScore W2986635260C124504099 @default.
- W2986635260 hasConceptScore W2986635260C126838900 @default.
- W2986635260 hasConceptScore W2986635260C143409427 @default.
- W2986635260 hasConceptScore W2986635260C153180895 @default.
- W2986635260 hasConceptScore W2986635260C154945302 @default.
- W2986635260 hasConceptScore W2986635260C163892561 @default.
- W2986635260 hasConceptScore W2986635260C203616005 @default.
- W2986635260 hasConceptScore W2986635260C2778212899 @default.
- W2986635260 hasConceptScore W2986635260C28826006 @default.
- W2986635260 hasConceptScore W2986635260C31972630 @default.
- W2986635260 hasConceptScore W2986635260C33923547 @default.
- W2986635260 hasConceptScore W2986635260C41008148 @default.
- W2986635260 hasConceptScore W2986635260C65185188 @default.
- W2986635260 hasConceptScore W2986635260C71924100 @default.
- W2986635260 hasConceptScore W2986635260C89600930 @default.
- W2986635260 hasFunder F4320321001 @default.
- W2986635260 hasLocation W29866352601 @default.
- W2986635260 hasOpenAccess W2986635260 @default.
- W2986635260 hasPrimaryLocation W29866352601 @default.
- W2986635260 hasRelatedWork W1507266234 @default.
- W2986635260 hasRelatedWork W1669643531 @default.