Matches in SemOpenAlex for { <https://semopenalex.org/work/W2986670295> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2986670295 abstract "Let $mathrm G$ be a connected semi-simple compact Lie group and for $0<q<1$, let $(mathbb{C}[mathrm{G]_q}],Delta_q)$ be the Jimbo-Drinfeld $q$-deformation of $mathrm G$. We show that the $C^*$-completions of $mathrm{C}[mathrm{G]_q}$ are isomorphic for all values of $q$. Moreover, these isomorphisms are equivariant with respect to the right-action of the maximal torus." @default.
- W2986670295 created "2019-11-22" @default.
- W2986670295 creator A5011732797 @default.
- W2986670295 date "2018-11-05" @default.
- W2986670295 modified "2023-09-23" @default.
- W2986670295 title "q-Independence of the Jimbo-Drinfeld Quantization" @default.
- W2986670295 cites W157586513 @default.
- W2986670295 cites W1599145046 @default.
- W2986670295 cites W2037328702 @default.
- W2986670295 cites W2158676755 @default.
- W2986670295 cites W2165121148 @default.
- W2986670295 cites W2576128646 @default.
- W2986670295 cites W2576377538 @default.
- W2986670295 cites W2612451553 @default.
- W2986670295 hasPublicationYear "2018" @default.
- W2986670295 type Work @default.
- W2986670295 sameAs 2986670295 @default.
- W2986670295 citedByCount "0" @default.
- W2986670295 crossrefType "posted-content" @default.
- W2986670295 hasAuthorship W2986670295A5011732797 @default.
- W2986670295 hasConcept C114614502 @default.
- W2986670295 hasConcept C121332964 @default.
- W2986670295 hasConcept C171036898 @default.
- W2986670295 hasConcept C183877218 @default.
- W2986670295 hasConcept C187915474 @default.
- W2986670295 hasConcept C197893656 @default.
- W2986670295 hasConcept C202444582 @default.
- W2986670295 hasConcept C2524010 @default.
- W2986670295 hasConcept C33923547 @default.
- W2986670295 hasConcept C37914503 @default.
- W2986670295 hasConcept C5106717 @default.
- W2986670295 hasConcept C51568863 @default.
- W2986670295 hasConcept C9767117 @default.
- W2986670295 hasConceptScore W2986670295C114614502 @default.
- W2986670295 hasConceptScore W2986670295C121332964 @default.
- W2986670295 hasConceptScore W2986670295C171036898 @default.
- W2986670295 hasConceptScore W2986670295C183877218 @default.
- W2986670295 hasConceptScore W2986670295C187915474 @default.
- W2986670295 hasConceptScore W2986670295C197893656 @default.
- W2986670295 hasConceptScore W2986670295C202444582 @default.
- W2986670295 hasConceptScore W2986670295C2524010 @default.
- W2986670295 hasConceptScore W2986670295C33923547 @default.
- W2986670295 hasConceptScore W2986670295C37914503 @default.
- W2986670295 hasConceptScore W2986670295C5106717 @default.
- W2986670295 hasConceptScore W2986670295C51568863 @default.
- W2986670295 hasConceptScore W2986670295C9767117 @default.
- W2986670295 hasOpenAccess W2986670295 @default.
- W2986670295 hasRelatedWork W2080417491 @default.
- W2986670295 hasRelatedWork W2169172736 @default.
- W2986670295 hasRelatedWork W2573798339 @default.
- W2986670295 hasRelatedWork W2775207695 @default.
- W2986670295 hasRelatedWork W2902247178 @default.
- W2986670295 hasRelatedWork W2950053893 @default.
- W2986670295 hasRelatedWork W2950447729 @default.
- W2986670295 hasRelatedWork W2951458156 @default.
- W2986670295 hasRelatedWork W2951615044 @default.
- W2986670295 hasRelatedWork W2951673305 @default.
- W2986670295 hasRelatedWork W2952507813 @default.
- W2986670295 hasRelatedWork W2962976280 @default.
- W2986670295 hasRelatedWork W2963404196 @default.
- W2986670295 hasRelatedWork W2969742902 @default.
- W2986670295 hasRelatedWork W3015321344 @default.
- W2986670295 hasRelatedWork W3100964520 @default.
- W2986670295 hasRelatedWork W3106038793 @default.
- W2986670295 hasRelatedWork W3117323951 @default.
- W2986670295 hasRelatedWork W3186547127 @default.
- W2986670295 hasRelatedWork W3126572692 @default.
- W2986670295 isParatext "false" @default.
- W2986670295 isRetracted "false" @default.
- W2986670295 magId "2986670295" @default.
- W2986670295 workType "article" @default.