Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987001750> ?p ?o ?g. }
- W2987001750 endingPage "113081" @default.
- W2987001750 startingPage "113081" @default.
- W2987001750 abstract "In this abstract we would like to provide some exciting concrete information including the article's main impact and significance on expert and intelligent systems. The main impact is that the PTC expert intelligent system fills in the gaps between the human and software decision making processes. This gap analysis is analyzed via empirical triangulation of rail worker data collected from its groups, individuals and the rail industry itself. We utilize an expert intelligent system PTC information technology application to both measure and to improve the alertness of the groups and workers in order to improve the overall safety of the railways through reduced human errors and failures to prevent accidents. Many individual differences in alertness among military, railroad, and other industry workers stem from a lack of sufficient sleep. This continues to be a concern in the railroad industry, even with the implementation of positive train control (PTC) expert system technology. Information technology aids such as PTC cannot prevent all accidents, and errors and failures with PTC may occur. Furthermore, drug interventions are a short-term solution for improving alertness. This study investigated the effect of sleep deprivation on the alertness of railroad signalmen at work, individual differences in alertness, and the information technology available to improve alertness. We investigated various information and communication technology control systems that can be used to maintain operational safety in the railroad industry in the face of incompatible circadian rhythms due to irregular hours, weekend work, and night operations. To fully explain individual differences after the adoption of technology, our approach posits the necessary parameters that one must consider for reason-oriented action, sequential updating, feedback, and technology acceptance in a unified model. This triangulation can help manage workers by efficiently increasing their productivity and improving their health. In our analysis we used R statistical software and Tableau. To test our theory, we issued an Apple watch to a locomotive engineer. The perceived usefulness, perceived ease of use, and actual use he reported led to an analysis of his sleep patterns that eventually ended in his adoption of a sleep apnea device and an improvement in his alertness and effectiveness. His adoption of the technology also resulted in a decrease in his use of chemical interventions to increase his alertness. Our model shows that the alertness of signalmen can be predicted. Therefore, we recommend that the alertness of all railroad workers be predicted given the safety limitations of PTC." @default.
- W2987001750 created "2019-11-22" @default.
- W2987001750 creator A5033260657 @default.
- W2987001750 date "2020-04-01" @default.
- W2987001750 modified "2023-10-09" @default.
- W2987001750 title "An expert system gap analysis and empirical triangulation of individual differences, interventions, and information technology applications in alertness of railroad workers" @default.
- W2987001750 cites W1562784076 @default.
- W2987001750 cites W1791587663 @default.
- W2987001750 cites W1871569267 @default.
- W2987001750 cites W1872215662 @default.
- W2987001750 cites W1889757068 @default.
- W2987001750 cites W1959262622 @default.
- W2987001750 cites W1966565414 @default.
- W2987001750 cites W1972726406 @default.
- W2987001750 cites W1974108202 @default.
- W2987001750 cites W1977455103 @default.
- W2987001750 cites W1988304297 @default.
- W2987001750 cites W1995141428 @default.
- W2987001750 cites W2005155588 @default.
- W2987001750 cites W2035474281 @default.
- W2987001750 cites W2041316075 @default.
- W2987001750 cites W2043566108 @default.
- W2987001750 cites W2045678724 @default.
- W2987001750 cites W2048449733 @default.
- W2987001750 cites W2049760470 @default.
- W2987001750 cites W2059549509 @default.
- W2987001750 cites W2068971809 @default.
- W2987001750 cites W2081504085 @default.
- W2987001750 cites W2083467724 @default.
- W2987001750 cites W2084085693 @default.
- W2987001750 cites W2084108509 @default.
- W2987001750 cites W2090814539 @default.
- W2987001750 cites W2091263728 @default.
- W2987001750 cites W2091644153 @default.
- W2987001750 cites W2094347374 @default.
- W2987001750 cites W2094761105 @default.
- W2987001750 cites W2097849093 @default.
- W2987001750 cites W2100379340 @default.
- W2987001750 cites W2112042732 @default.
- W2987001750 cites W2118974330 @default.
- W2987001750 cites W2123573684 @default.
- W2987001750 cites W2126131271 @default.
- W2987001750 cites W2139003235 @default.
- W2987001750 cites W2147012833 @default.
- W2987001750 cites W2148033453 @default.
- W2987001750 cites W2153730290 @default.
- W2987001750 cites W2162949134 @default.
- W2987001750 cites W2163216404 @default.
- W2987001750 cites W2166982098 @default.
- W2987001750 cites W2285375918 @default.
- W2987001750 cites W2295602918 @default.
- W2987001750 cites W2339736744 @default.
- W2987001750 cites W2416272569 @default.
- W2987001750 cites W2468367897 @default.
- W2987001750 cites W2474889045 @default.
- W2987001750 cites W2528794997 @default.
- W2987001750 cites W2540887861 @default.
- W2987001750 cites W2558988882 @default.
- W2987001750 cites W2593036750 @default.
- W2987001750 cites W2593216954 @default.
- W2987001750 cites W2617345907 @default.
- W2987001750 cites W2625846563 @default.
- W2987001750 cites W2750766691 @default.
- W2987001750 cites W2760788688 @default.
- W2987001750 cites W2773780832 @default.
- W2987001750 cites W2774928727 @default.
- W2987001750 cites W2775479796 @default.
- W2987001750 cites W2790542668 @default.
- W2987001750 cites W2795887809 @default.
- W2987001750 cites W2802518667 @default.
- W2987001750 cites W2807109837 @default.
- W2987001750 cites W2801370706 @default.
- W2987001750 doi "https://doi.org/10.1016/j.eswa.2019.113081" @default.
- W2987001750 hasPublicationYear "2020" @default.
- W2987001750 type Work @default.
- W2987001750 sameAs 2987001750 @default.
- W2987001750 citedByCount "7" @default.
- W2987001750 countsByYear W29870017502020 @default.
- W2987001750 countsByYear W29870017502021 @default.
- W2987001750 crossrefType "journal-article" @default.
- W2987001750 hasAuthorship W2987001750A5033260657 @default.
- W2987001750 hasConcept C111472728 @default.
- W2987001750 hasConcept C111919701 @default.
- W2987001750 hasConcept C112930515 @default.
- W2987001750 hasConcept C118552586 @default.
- W2987001750 hasConcept C120936955 @default.
- W2987001750 hasConcept C121017731 @default.
- W2987001750 hasConcept C127413603 @default.
- W2987001750 hasConcept C138885662 @default.
- W2987001750 hasConcept C144133560 @default.
- W2987001750 hasConcept C154945302 @default.
- W2987001750 hasConcept C15744967 @default.
- W2987001750 hasConcept C18762648 @default.
- W2987001750 hasConcept C200678441 @default.
- W2987001750 hasConcept C27415008 @default.
- W2987001750 hasConcept C2775924081 @default.
- W2987001750 hasConcept C41008148 @default.
- W2987001750 hasConcept C75630572 @default.