Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987016131> ?p ?o ?g. }
- W2987016131 endingPage "308" @default.
- W2987016131 startingPage "293" @default.
- W2987016131 abstract "Maximizing the classification accuracy and minimizing the number of selected features are the two main incompatible objectives for using feature selection to overcome the curse of dimensionality. “Classification accuracy highly dependents on the nature of the features in a dataset which may contain irrelevant or redundant data. The main aim of feature selection is to eliminate these types of features to enhance the classification accuracy.” This work presents a new meta-heuristic optimization approach, called Parasitism-Predation Algorithm (PPA), which mimics the interaction between the predator (cats), the parasite (cuckoos) and the host (crows) in the crow–cuckoo–cat system model to overcome the problems of low convergence and the curse of dimensionality of large data. The proposed hybrid framework combines the relative advantages of cat swarm optimization (CSO), cuckoo search (CS) and crow search algorithm (CSA) to attain a combinatorial set of features to boost up the classification accuracy. Nesting, parasitism, and predation phases are supposed to help exploration ability and balance in the context of solving classification problems. In addition, Levy flight distribution is applied to help better diversity of conventional CSA and improve ability of exploration. Meanwhile, an effective fitness function is utilized to enable the proposed PPA-based feature selector using K-Nearest Neighbors algorithm (KNN) to attain a combinatorial set of features. The proposed PPA and four standard heuristic search algorithms are looked at to gauge how efficient the proposed option is. Additionally, eighteen classification datasets are deployed to gauges its efficacy. The results highlight that the algorithm proposed is both effective and competitive in terms of performance of classification and dimensionality reduction as opposed to other heuristic options." @default.
- W2987016131 created "2019-11-22" @default.
- W2987016131 creator A5004522707 @default.
- W2987016131 creator A5006096296 @default.
- W2987016131 creator A5019141358 @default.
- W2987016131 creator A5024882094 @default.
- W2987016131 creator A5039678136 @default.
- W2987016131 creator A5084306484 @default.
- W2987016131 date "2020-06-01" @default.
- W2987016131 modified "2023-10-01" @default.
- W2987016131 title "Parasitism – Predation algorithm (PPA): A novel approach for feature selection" @default.
- W2987016131 cites W138398336 @default.
- W2987016131 cites W1444952417 @default.
- W2987016131 cites W1963763787 @default.
- W2987016131 cites W1970204203 @default.
- W2987016131 cites W1976744965 @default.
- W2987016131 cites W1977275461 @default.
- W2987016131 cites W1977304691 @default.
- W2987016131 cites W1996326412 @default.
- W2987016131 cites W2010059576 @default.
- W2987016131 cites W2014802425 @default.
- W2987016131 cites W2026305126 @default.
- W2987016131 cites W2030585401 @default.
- W2987016131 cites W2035295192 @default.
- W2987016131 cites W2039568841 @default.
- W2987016131 cites W2042802301 @default.
- W2987016131 cites W2059431007 @default.
- W2987016131 cites W2086208228 @default.
- W2987016131 cites W2105593825 @default.
- W2987016131 cites W2118044993 @default.
- W2987016131 cites W2151554678 @default.
- W2987016131 cites W2290883490 @default.
- W2987016131 cites W2306115793 @default.
- W2987016131 cites W2336033325 @default.
- W2987016131 cites W2411885377 @default.
- W2987016131 cites W2471485804 @default.
- W2987016131 cites W2486983281 @default.
- W2987016131 cites W2593314755 @default.
- W2987016131 cites W2596496399 @default.
- W2987016131 cites W2605902561 @default.
- W2987016131 cites W2623108157 @default.
- W2987016131 cites W2765937321 @default.
- W2987016131 cites W2767768852 @default.
- W2987016131 cites W2774064330 @default.
- W2987016131 cites W2776226778 @default.
- W2987016131 cites W2790917159 @default.
- W2987016131 cites W2793928178 @default.
- W2987016131 cites W2801536506 @default.
- W2987016131 cites W2889083964 @default.
- W2987016131 cites W2892079407 @default.
- W2987016131 cites W2897007886 @default.
- W2987016131 cites W2969350434 @default.
- W2987016131 cites W4250694974 @default.
- W2987016131 doi "https://doi.org/10.1016/j.asej.2019.10.004" @default.
- W2987016131 hasPublicationYear "2020" @default.
- W2987016131 type Work @default.
- W2987016131 sameAs 2987016131 @default.
- W2987016131 citedByCount "43" @default.
- W2987016131 countsByYear W29870161312020 @default.
- W2987016131 countsByYear W29870161312021 @default.
- W2987016131 countsByYear W29870161312022 @default.
- W2987016131 countsByYear W29870161312023 @default.
- W2987016131 crossrefType "journal-article" @default.
- W2987016131 hasAuthorship W2987016131A5004522707 @default.
- W2987016131 hasAuthorship W2987016131A5006096296 @default.
- W2987016131 hasAuthorship W2987016131A5019141358 @default.
- W2987016131 hasAuthorship W2987016131A5024882094 @default.
- W2987016131 hasAuthorship W2987016131A5039678136 @default.
- W2987016131 hasAuthorship W2987016131A5084306484 @default.
- W2987016131 hasBestOaLocation W29870161311 @default.
- W2987016131 hasConcept C111030470 @default.
- W2987016131 hasConcept C11413529 @default.
- W2987016131 hasConcept C117241572 @default.
- W2987016131 hasConcept C119857082 @default.
- W2987016131 hasConcept C13280743 @default.
- W2987016131 hasConcept C138885662 @default.
- W2987016131 hasConcept C148483581 @default.
- W2987016131 hasConcept C151730666 @default.
- W2987016131 hasConcept C153180895 @default.
- W2987016131 hasConcept C154945302 @default.
- W2987016131 hasConcept C185798385 @default.
- W2987016131 hasConcept C205649164 @default.
- W2987016131 hasConcept C2776401178 @default.
- W2987016131 hasConcept C2779343474 @default.
- W2987016131 hasConcept C41008148 @default.
- W2987016131 hasConcept C41895202 @default.
- W2987016131 hasConcept C85617194 @default.
- W2987016131 hasConcept C86803240 @default.
- W2987016131 hasConceptScore W2987016131C111030470 @default.
- W2987016131 hasConceptScore W2987016131C11413529 @default.
- W2987016131 hasConceptScore W2987016131C117241572 @default.
- W2987016131 hasConceptScore W2987016131C119857082 @default.
- W2987016131 hasConceptScore W2987016131C13280743 @default.
- W2987016131 hasConceptScore W2987016131C138885662 @default.
- W2987016131 hasConceptScore W2987016131C148483581 @default.
- W2987016131 hasConceptScore W2987016131C151730666 @default.
- W2987016131 hasConceptScore W2987016131C153180895 @default.
- W2987016131 hasConceptScore W2987016131C154945302 @default.