Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987029808> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2987029808 abstract "Abstract The present study aimed to conduct a real-time automatic analysis of two important surgical phases, which are continuous curvilinear capsulorrhexis (CCC), nuclear extraction, and three other surgical phases of cataract surgery using artificial intelligence technology. A total of 303 cases of cataract surgery registered in the clinical database of the Ophthalmology Department of Tsukazaki Hospital were used as a dataset. Surgical videos were downsampled to a resolution of 299 × 168 at 1 FPS to image each frame. Next, based on the start and end times of each surgical phase recorded by an ophthalmologist, the obtained images were labeled correctly. Using the data, a neural network model, known as InceptionV3, was developed to identify the given surgical phase for each image. Then, the obtained images were processed in chronological order using the neural network model, where the moving average of the output result of five consecutive images was derived. The class with the maximum output value was defined as the surgical phase. For each surgical phase, the time at which a phase was first identified was defined as the start time, and the time at which a phase was last identified was defined as the end time. The performance was evaluated by finding the mean absolute error between the start and end times of each important phase recorded by the ophthalmologist as well as the start and end times determined by the model. The correct response rate of the cataract surgical phase classification was 90.7% for CCC, 94.5% for nuclear extraction, and 97.9% for other phases, with a mean correct response rate of 96.5%. The errors between each phase’s start and end times recorded by the ophthalmologist and those determined by the neural network model were as follows: CCC’s start and end times, 3.34 seconds and 4.43 seconds, respectively and nuclear extraction’s start and end times, 7.21 seconds and 6.04 seconds, respectively, with a mean of 5.25 seconds. The neural network model used in this study was able to perform the classification of the surgical phase by only referring to the last 5 seconds of video images. Therefore, our method has performed like a real-time classification." @default.
- W2987029808 created "2019-11-22" @default.
- W2987029808 creator A5001915732 @default.
- W2987029808 creator A5015580677 @default.
- W2987029808 creator A5023011213 @default.
- W2987029808 creator A5076582653 @default.
- W2987029808 creator A5082805355 @default.
- W2987029808 date "2019-11-12" @default.
- W2987029808 modified "2023-09-23" @default.
- W2987029808 title "Real-Time Extraction of Important Surgical Phases in Cataract Surgery Videos" @default.
- W2987029808 cites W1965372977 @default.
- W2987029808 cites W2048006292 @default.
- W2987029808 cites W2064767749 @default.
- W2987029808 cites W2125838338 @default.
- W2987029808 cites W2128160875 @default.
- W2987029808 cites W2557738935 @default.
- W2987029808 cites W2590667541 @default.
- W2987029808 cites W2602589265 @default.
- W2987029808 cites W2748890376 @default.
- W2987029808 cites W2772246530 @default.
- W2987029808 cites W2890147791 @default.
- W2987029808 cites W2927739223 @default.
- W2987029808 cites W3097096317 @default.
- W2987029808 doi "https://doi.org/10.1038/s41598-019-53091-8" @default.
- W2987029808 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6851365" @default.
- W2987029808 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31719589" @default.
- W2987029808 hasPublicationYear "2019" @default.
- W2987029808 type Work @default.
- W2987029808 sameAs 2987029808 @default.
- W2987029808 citedByCount "27" @default.
- W2987029808 countsByYear W29870298082020 @default.
- W2987029808 countsByYear W29870298082021 @default.
- W2987029808 countsByYear W29870298082022 @default.
- W2987029808 countsByYear W29870298082023 @default.
- W2987029808 crossrefType "journal-article" @default.
- W2987029808 hasAuthorship W2987029808A5001915732 @default.
- W2987029808 hasAuthorship W2987029808A5015580677 @default.
- W2987029808 hasAuthorship W2987029808A5023011213 @default.
- W2987029808 hasAuthorship W2987029808A5076582653 @default.
- W2987029808 hasAuthorship W2987029808A5082805355 @default.
- W2987029808 hasBestOaLocation W29870298081 @default.
- W2987029808 hasConcept C141071460 @default.
- W2987029808 hasConcept C154945302 @default.
- W2987029808 hasConcept C2779370443 @default.
- W2987029808 hasConcept C3020256872 @default.
- W2987029808 hasConcept C41008148 @default.
- W2987029808 hasConcept C71924100 @default.
- W2987029808 hasConceptScore W2987029808C141071460 @default.
- W2987029808 hasConceptScore W2987029808C154945302 @default.
- W2987029808 hasConceptScore W2987029808C2779370443 @default.
- W2987029808 hasConceptScore W2987029808C3020256872 @default.
- W2987029808 hasConceptScore W2987029808C41008148 @default.
- W2987029808 hasConceptScore W2987029808C71924100 @default.
- W2987029808 hasIssue "1" @default.
- W2987029808 hasLocation W29870298081 @default.
- W2987029808 hasLocation W29870298082 @default.
- W2987029808 hasLocation W29870298083 @default.
- W2987029808 hasOpenAccess W2987029808 @default.
- W2987029808 hasPrimaryLocation W29870298081 @default.
- W2987029808 hasRelatedWork W2374229914 @default.
- W2987029808 hasRelatedWork W2418816562 @default.
- W2987029808 hasRelatedWork W2460592364 @default.
- W2987029808 hasRelatedWork W2748952813 @default.
- W2987029808 hasRelatedWork W2899084033 @default.
- W2987029808 hasRelatedWork W2987029808 @default.
- W2987029808 hasRelatedWork W3166469377 @default.
- W2987029808 hasRelatedWork W4212829942 @default.
- W2987029808 hasRelatedWork W4233024863 @default.
- W2987029808 hasRelatedWork W2617162296 @default.
- W2987029808 hasVolume "9" @default.
- W2987029808 isParatext "false" @default.
- W2987029808 isRetracted "false" @default.
- W2987029808 magId "2987029808" @default.
- W2987029808 workType "article" @default.