Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987071907> ?p ?o ?g. }
- W2987071907 endingPage "83" @default.
- W2987071907 startingPage "71" @default.
- W2987071907 abstract "This chapter covers the state-of-the-art multivariate statistical methods designed for high dimensional multiset omics data analysis. Recent biotechnological developments have enabled large-scale measurement of various biomolecular data, such as genotypic and phenotypic data, dispersed over various omics domains. An emergent research direction is to analyze these data sources using an integrated approach to better model and understand the underlying biology of complex disease conditions. However, comprehensive analysis techniques that can handle both the size and complexity, and at the same time can account for the hierarchical structure of such data, are lacking. An overview of some of the developments in multivariate techniques for high-dimensional omics data analysis, highlighting two well-known multivariate methods, canonical correlation analysis (CCA) and redundancy analysis (RDA), is provided in this chapter. Penalized versions of CCA are widespread in the omics data analysis field, and there is recent work on multiset penalized RDA that is applicable to multiset omics data. How these methods meet the statistical challenges that come with high-dimensional multiset omics data analysis and help to further our understanding of the human condition in terms of health and disease are presented. Additionally, the current challenges to be resolved in the field of omics data analysis are discussed." @default.
- W2987071907 created "2019-11-22" @default.
- W2987071907 creator A5051056050 @default.
- W2987071907 creator A5090373934 @default.
- W2987071907 date "2019-11-01" @default.
- W2987071907 modified "2023-09-25" @default.
- W2987071907 title "Multivariate Statistical Methods for High-Dimensional Multiset Omics Data Analysis" @default.
- W2987071907 cites W1737180198 @default.
- W2987071907 cites W1967827763 @default.
- W2987071907 cites W1968206427 @default.
- W2987071907 cites W1969435618 @default.
- W2987071907 cites W1982866666 @default.
- W2987071907 cites W1985728412 @default.
- W2987071907 cites W1992549770 @default.
- W2987071907 cites W2008929650 @default.
- W2987071907 cites W2013124714 @default.
- W2987071907 cites W2043475579 @default.
- W2987071907 cites W2048687970 @default.
- W2987071907 cites W2055214702 @default.
- W2987071907 cites W2069769149 @default.
- W2987071907 cites W2074490119 @default.
- W2987071907 cites W2099410559 @default.
- W2987071907 cites W2122825543 @default.
- W2987071907 cites W2124634097 @default.
- W2987071907 cites W2134469465 @default.
- W2987071907 cites W2159547203 @default.
- W2987071907 cites W2165507622 @default.
- W2987071907 cites W2264481086 @default.
- W2987071907 cites W2283849418 @default.
- W2987071907 cites W2311607323 @default.
- W2987071907 cites W2481769138 @default.
- W2987071907 cites W2550535012 @default.
- W2987071907 cites W2611138580 @default.
- W2987071907 cites W2625162235 @default.
- W2987071907 cites W2750804603 @default.
- W2987071907 cites W2774504697 @default.
- W2987071907 cites W2778938825 @default.
- W2987071907 cites W2785694006 @default.
- W2987071907 cites W2792874817 @default.
- W2987071907 cites W2801470635 @default.
- W2987071907 cites W2804452393 @default.
- W2987071907 cites W2805310212 @default.
- W2987071907 cites W2806899908 @default.
- W2987071907 cites W2808363286 @default.
- W2987071907 cites W2895041039 @default.
- W2987071907 cites W2901218091 @default.
- W2987071907 cites W2902950514 @default.
- W2987071907 cites W2906964061 @default.
- W2987071907 cites W2909472027 @default.
- W2987071907 cites W2951934944 @default.
- W2987071907 cites W4237723258 @default.
- W2987071907 cites W4241453085 @default.
- W2987071907 cites W4291745724 @default.
- W2987071907 cites W4292053589 @default.
- W2987071907 doi "https://doi.org/10.15586/computationalbiology.2019.ch5" @default.
- W2987071907 hasPublicationYear "2019" @default.
- W2987071907 type Work @default.
- W2987071907 sameAs 2987071907 @default.
- W2987071907 citedByCount "3" @default.
- W2987071907 countsByYear W29870719072021 @default.
- W2987071907 countsByYear W29870719072022 @default.
- W2987071907 countsByYear W29870719072023 @default.
- W2987071907 crossrefType "book-chapter" @default.
- W2987071907 hasAuthorship W2987071907A5051056050 @default.
- W2987071907 hasAuthorship W2987071907A5090373934 @default.
- W2987071907 hasBestOaLocation W29870719071 @default.
- W2987071907 hasConcept C114614502 @default.
- W2987071907 hasConcept C119857082 @default.
- W2987071907 hasConcept C124101348 @default.
- W2987071907 hasConcept C153874254 @default.
- W2987071907 hasConcept C154945302 @default.
- W2987071907 hasConcept C157585117 @default.
- W2987071907 hasConcept C161584116 @default.
- W2987071907 hasConcept C2522767166 @default.
- W2987071907 hasConcept C2779623528 @default.
- W2987071907 hasConcept C33923547 @default.
- W2987071907 hasConcept C38180746 @default.
- W2987071907 hasConcept C41008148 @default.
- W2987071907 hasConcept C60644358 @default.
- W2987071907 hasConcept C70721500 @default.
- W2987071907 hasConcept C86803240 @default.
- W2987071907 hasConceptScore W2987071907C114614502 @default.
- W2987071907 hasConceptScore W2987071907C119857082 @default.
- W2987071907 hasConceptScore W2987071907C124101348 @default.
- W2987071907 hasConceptScore W2987071907C153874254 @default.
- W2987071907 hasConceptScore W2987071907C154945302 @default.
- W2987071907 hasConceptScore W2987071907C157585117 @default.
- W2987071907 hasConceptScore W2987071907C161584116 @default.
- W2987071907 hasConceptScore W2987071907C2522767166 @default.
- W2987071907 hasConceptScore W2987071907C2779623528 @default.
- W2987071907 hasConceptScore W2987071907C33923547 @default.
- W2987071907 hasConceptScore W2987071907C38180746 @default.
- W2987071907 hasConceptScore W2987071907C41008148 @default.
- W2987071907 hasConceptScore W2987071907C60644358 @default.
- W2987071907 hasConceptScore W2987071907C70721500 @default.
- W2987071907 hasConceptScore W2987071907C86803240 @default.
- W2987071907 hasLocation W29870719071 @default.
- W2987071907 hasOpenAccess W2987071907 @default.