Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987189469> ?p ?o ?g. }
- W2987189469 abstract "Background: Recent studies have indicated that functional connectivity is dynamic even during rest. A common approach to modeling the dynamic functional connectivity in whole-brain resting-state fMRI is to compute the correlation between anatomical regions via sliding time windows. However, the direct use of the sample correlation matrices is not reliable due to the image acquisition and processing noises in resting-sate fMRI. New method: To overcome these limitations, we propose a new statistical model that smooths out the noise by exploiting the geometric structure of correlation matrices. The dynamic correlation matrix is modeled as a linear combination of symmetric positive-definite matrices combined with cosine series representation. The resulting smoothed dynamic correlation matrices are clustered into disjoint brain connectivity states using the k-means clustering algorithm. Results: The proposed model preserves the geometric structure of underlying physiological dynamic correlation, eliminates unwanted noise in connectivity and obtains more accurate state spaces. The difference in the estimated dynamic connectivity states between males and females is identified. Comparison with existing methods: We demonstrate that the proposed statistical model has less rapid state changes caused by noise and improves the accuracy in identifying and discriminating different states. Conclusions: We propose a new regression model on dynamically changing correlation matrices that provides better performance over existing windowed correlation and is more reliable for the modeling of dynamic connectivity." @default.
- W2987189469 created "2019-11-22" @default.
- W2987189469 creator A5001719210 @default.
- W2987189469 creator A5022587472 @default.
- W2987189469 creator A5029674397 @default.
- W2987189469 creator A5046157434 @default.
- W2987189469 creator A5082278973 @default.
- W2987189469 date "2018-12-25" @default.
- W2987189469 modified "2023-10-01" @default.
- W2987189469 title "Statistical Model for Dynamically-Changing Correlation Matrices with Application to Brain Connectivity" @default.
- W2987189469 cites W1431410430 @default.
- W2987189469 cites W1551148884 @default.
- W2987189469 cites W1560536095 @default.
- W2987189469 cites W1886029756 @default.
- W2987189469 cites W1972562599 @default.
- W2987189469 cites W1973776237 @default.
- W2987189469 cites W1975821649 @default.
- W2987189469 cites W1978694642 @default.
- W2987189469 cites W1983208069 @default.
- W2987189469 cites W1984453610 @default.
- W2987189469 cites W1986964250 @default.
- W2987189469 cites W1988563570 @default.
- W2987189469 cites W2001409570 @default.
- W2987189469 cites W2002367251 @default.
- W2987189469 cites W2005317708 @default.
- W2987189469 cites W2007894316 @default.
- W2987189469 cites W2008152557 @default.
- W2987189469 cites W2011611054 @default.
- W2987189469 cites W2019003441 @default.
- W2987189469 cites W2020519533 @default.
- W2987189469 cites W2024729467 @default.
- W2987189469 cites W2026366832 @default.
- W2987189469 cites W2028808041 @default.
- W2987189469 cites W2033865693 @default.
- W2987189469 cites W2037035617 @default.
- W2987189469 cites W2048192550 @default.
- W2987189469 cites W2048857243 @default.
- W2987189469 cites W2052644075 @default.
- W2987189469 cites W2054014224 @default.
- W2987189469 cites W2058046532 @default.
- W2987189469 cites W2058187841 @default.
- W2987189469 cites W2064727436 @default.
- W2987189469 cites W2075680690 @default.
- W2987189469 cites W2082284485 @default.
- W2987189469 cites W2092872141 @default.
- W2987189469 cites W2094377986 @default.
- W2987189469 cites W2101219946 @default.
- W2987189469 cites W2103525268 @default.
- W2987189469 cites W2105595170 @default.
- W2987189469 cites W2105866209 @default.
- W2987189469 cites W2109606373 @default.
- W2987189469 cites W2117145236 @default.
- W2987189469 cites W2132175842 @default.
- W2987189469 cites W2135445066 @default.
- W2987189469 cites W2142566135 @default.
- W2987189469 cites W2146141169 @default.
- W2987189469 cites W2148726987 @default.
- W2987189469 cites W2166481425 @default.
- W2987189469 cites W2169787465 @default.
- W2987189469 cites W2170702893 @default.
- W2987189469 cites W2180423080 @default.
- W2987189469 cites W2273606872 @default.
- W2987189469 cites W2283731167 @default.
- W2987189469 cites W2288345344 @default.
- W2987189469 cites W2336687820 @default.
- W2987189469 cites W2343232392 @default.
- W2987189469 cites W2417129618 @default.
- W2987189469 cites W2431015478 @default.
- W2987189469 cites W2513244587 @default.
- W2987189469 cites W2560079766 @default.
- W2987189469 cites W2562004987 @default.
- W2987189469 cites W2563279629 @default.
- W2987189469 cites W2587535220 @default.
- W2987189469 cites W2733595594 @default.
- W2987189469 cites W2736296047 @default.
- W2987189469 cites W2740645522 @default.
- W2987189469 cites W2745068091 @default.
- W2987189469 cites W2759110565 @default.
- W2987189469 cites W2774553942 @default.
- W2987189469 cites W2774646741 @default.
- W2987189469 cites W2777412843 @default.
- W2987189469 cites W2780169993 @default.
- W2987189469 cites W2807685141 @default.
- W2987189469 cites W2847843809 @default.
- W2987189469 cites W2891131577 @default.
- W2987189469 cites W2949803139 @default.
- W2987189469 cites W3047398590 @default.
- W2987189469 cites W751959139 @default.
- W2987189469 cites W829099703 @default.
- W2987189469 doi "https://doi.org/10.48550/arxiv.1812.10050" @default.
- W2987189469 hasPublicationYear "2018" @default.
- W2987189469 type Work @default.
- W2987189469 sameAs 2987189469 @default.
- W2987189469 citedByCount "0" @default.
- W2987189469 crossrefType "posted-content" @default.
- W2987189469 hasAuthorship W2987189469A5001719210 @default.
- W2987189469 hasAuthorship W2987189469A5022587472 @default.
- W2987189469 hasAuthorship W2987189469A5029674397 @default.
- W2987189469 hasAuthorship W2987189469A5046157434 @default.
- W2987189469 hasAuthorship W2987189469A5082278973 @default.