Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987262246> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2987262246 abstract "Modern data analysis and processing tasks usually involve large sets of data structured by a graph. Typical examples include brain activity supported by neurons, data shared by users of social media, and traffic on transportation or energy networks. There are often settings where the graph is not readily available, and has to be estimated from data. This paper focuses on estimating a network structure capturing the dependencies among streaming graph signals in the form of a possibly directed, weighted adjacency matrix. Several works proposed centralized offline solutions to address this problem, without paying much attention to the distributed nature of networks. We start from a centralized setting and show how, by introducing a simple yet powerful data model, we can infer a graph structure from streaming data with a distributed online learning algorithm. Our algorithm is tested experimentally to illustrate its usefulness, and successfully compared to a centralized offline solution of the literature." @default.
- W2987262246 created "2019-11-22" @default.
- W2987262246 creator A5000665771 @default.
- W2987262246 creator A5009808175 @default.
- W2987262246 creator A5015999129 @default.
- W2987262246 creator A5075161240 @default.
- W2987262246 date "2019-09-01" @default.
- W2987262246 modified "2023-10-02" @default.
- W2987262246 title "Learning Causal Networks Topology From Streaming Graph Signals" @default.
- W2987262246 cites W1497214886 @default.
- W2987262246 cites W1515707356 @default.
- W2987262246 cites W1991252559 @default.
- W2987262246 cites W1999870684 @default.
- W2987262246 cites W2059507087 @default.
- W2987262246 cites W2068000292 @default.
- W2987262246 cites W2080467172 @default.
- W2987262246 cites W2101491865 @default.
- W2987262246 cites W2119456804 @default.
- W2987262246 cites W2132555912 @default.
- W2987262246 cites W2160660350 @default.
- W2987262246 cites W2520179645 @default.
- W2987262246 cites W2530728613 @default.
- W2987262246 cites W2610805269 @default.
- W2987262246 cites W2627924202 @default.
- W2987262246 cites W2663410357 @default.
- W2987262246 cites W2791289146 @default.
- W2987262246 cites W2885442657 @default.
- W2987262246 cites W2890187679 @default.
- W2987262246 cites W2903139958 @default.
- W2987262246 cites W2959406683 @default.
- W2987262246 cites W2962759781 @default.
- W2987262246 cites W2963384510 @default.
- W2987262246 cites W2963738599 @default.
- W2987262246 doi "https://doi.org/10.23919/eusipco.2019.8902826" @default.
- W2987262246 hasPublicationYear "2019" @default.
- W2987262246 type Work @default.
- W2987262246 sameAs 2987262246 @default.
- W2987262246 citedByCount "5" @default.
- W2987262246 countsByYear W29872622462021 @default.
- W2987262246 countsByYear W29872622462022 @default.
- W2987262246 crossrefType "proceedings-article" @default.
- W2987262246 hasAuthorship W2987262246A5000665771 @default.
- W2987262246 hasAuthorship W2987262246A5009808175 @default.
- W2987262246 hasAuthorship W2987262246A5015999129 @default.
- W2987262246 hasAuthorship W2987262246A5075161240 @default.
- W2987262246 hasBestOaLocation W29872622462 @default.
- W2987262246 hasConcept C124101348 @default.
- W2987262246 hasConcept C132525143 @default.
- W2987262246 hasConcept C154945302 @default.
- W2987262246 hasConcept C180356752 @default.
- W2987262246 hasConcept C199845137 @default.
- W2987262246 hasConcept C2777611316 @default.
- W2987262246 hasConcept C31258907 @default.
- W2987262246 hasConcept C41008148 @default.
- W2987262246 hasConcept C80444323 @default.
- W2987262246 hasConceptScore W2987262246C124101348 @default.
- W2987262246 hasConceptScore W2987262246C132525143 @default.
- W2987262246 hasConceptScore W2987262246C154945302 @default.
- W2987262246 hasConceptScore W2987262246C180356752 @default.
- W2987262246 hasConceptScore W2987262246C199845137 @default.
- W2987262246 hasConceptScore W2987262246C2777611316 @default.
- W2987262246 hasConceptScore W2987262246C31258907 @default.
- W2987262246 hasConceptScore W2987262246C41008148 @default.
- W2987262246 hasConceptScore W2987262246C80444323 @default.
- W2987262246 hasLocation W29872622461 @default.
- W2987262246 hasLocation W29872622462 @default.
- W2987262246 hasLocation W29872622463 @default.
- W2987262246 hasLocation W29872622464 @default.
- W2987262246 hasLocation W29872622465 @default.
- W2987262246 hasOpenAccess W2987262246 @default.
- W2987262246 hasPrimaryLocation W29872622461 @default.
- W2987262246 hasRelatedWork W117528671 @default.
- W2987262246 hasRelatedWork W2023497185 @default.
- W2987262246 hasRelatedWork W2106287515 @default.
- W2987262246 hasRelatedWork W2347219288 @default.
- W2987262246 hasRelatedWork W2366221835 @default.
- W2987262246 hasRelatedWork W2381880241 @default.
- W2987262246 hasRelatedWork W2384129116 @default.
- W2987262246 hasRelatedWork W2751411564 @default.
- W2987262246 hasRelatedWork W4385849035 @default.
- W2987262246 hasRelatedWork W2612939388 @default.
- W2987262246 isParatext "false" @default.
- W2987262246 isRetracted "false" @default.
- W2987262246 magId "2987262246" @default.
- W2987262246 workType "article" @default.