Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987272246> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2987272246 endingPage "101752" @default.
- W2987272246 startingPage "101752" @default.
- W2987272246 abstract "In today's world, cardiovascular diseases are prevalent becoming the leading cause of death; more than half of the cardiovascular diseases are due to Coronary Heart Disease (CHD) which generates the demand of predicting them timely so that people can take precautions or treatment before it becomes fatal. For serving this purpose a Modified Artificial Plant Optimization (MAPO) algorithm has been proposed which can be used as an optimal feature selector along with other machine learning algorithms to predict the heart rate using the fingertip video dataset which further predicts the presence or absence of Coronary Heart Disease in an individual at the moment. Initially, the video dataset has been pre-processed, noise is filtered and then MAPO is applied to predict the heart rate with a Pearson correlation and Standard Error Estimate of 0.9541 and 2.418 respectively. The predicted heart rate is used as a feature in other two datasets and MAPO is again applied to optimize the features of both datasets. Different machine learning algorithms are then applied to the optimized dataset to predict values for presence of current heart disease. The result shows that MAPO reduces the dimensionality to the most significant information with comparable accuracies for different machine learning models with maximum dimensionality reduction of 81.25%. MAPO has been compared with other optimizers and outperforms them with better accuracy." @default.
- W2987272246 created "2019-11-22" @default.
- W2987272246 creator A5000664266 @default.
- W2987272246 creator A5006327684 @default.
- W2987272246 creator A5016215258 @default.
- W2987272246 creator A5034853815 @default.
- W2987272246 creator A5045879377 @default.
- W2987272246 creator A5073496871 @default.
- W2987272246 date "2020-01-01" @default.
- W2987272246 modified "2023-10-03" @default.
- W2987272246 title "Artificial plant optimization algorithm to detect heart rate & presence of heart disease using machine learning" @default.
- W2987272246 cites W1569156924 @default.
- W2987272246 cites W1979316402 @default.
- W2987272246 cites W1981918735 @default.
- W2987272246 cites W2023592671 @default.
- W2987272246 cites W2031202609 @default.
- W2987272246 cites W2032719427 @default.
- W2987272246 cites W2104454808 @default.
- W2987272246 cites W2122327744 @default.
- W2987272246 cites W2313389279 @default.
- W2987272246 cites W2326543055 @default.
- W2987272246 cites W2329049381 @default.
- W2987272246 cites W2338873322 @default.
- W2987272246 cites W2463429024 @default.
- W2987272246 cites W2808891523 @default.
- W2987272246 cites W2922968028 @default.
- W2987272246 cites W3105346980 @default.
- W2987272246 cites W4242104760 @default.
- W2987272246 doi "https://doi.org/10.1016/j.artmed.2019.101752" @default.
- W2987272246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31980091" @default.
- W2987272246 hasPublicationYear "2020" @default.
- W2987272246 type Work @default.
- W2987272246 sameAs 2987272246 @default.
- W2987272246 citedByCount "39" @default.
- W2987272246 countsByYear W29872722462020 @default.
- W2987272246 countsByYear W29872722462021 @default.
- W2987272246 countsByYear W29872722462022 @default.
- W2987272246 countsByYear W29872722462023 @default.
- W2987272246 crossrefType "journal-article" @default.
- W2987272246 hasAuthorship W2987272246A5000664266 @default.
- W2987272246 hasAuthorship W2987272246A5006327684 @default.
- W2987272246 hasAuthorship W2987272246A5016215258 @default.
- W2987272246 hasAuthorship W2987272246A5034853815 @default.
- W2987272246 hasAuthorship W2987272246A5045879377 @default.
- W2987272246 hasAuthorship W2987272246A5073496871 @default.
- W2987272246 hasConcept C11413529 @default.
- W2987272246 hasConcept C119857082 @default.
- W2987272246 hasConcept C126255220 @default.
- W2987272246 hasConcept C154945302 @default.
- W2987272246 hasConcept C164705383 @default.
- W2987272246 hasConcept C2780074459 @default.
- W2987272246 hasConcept C2987595161 @default.
- W2987272246 hasConcept C33923547 @default.
- W2987272246 hasConcept C41008148 @default.
- W2987272246 hasConcept C71924100 @default.
- W2987272246 hasConceptScore W2987272246C11413529 @default.
- W2987272246 hasConceptScore W2987272246C119857082 @default.
- W2987272246 hasConceptScore W2987272246C126255220 @default.
- W2987272246 hasConceptScore W2987272246C154945302 @default.
- W2987272246 hasConceptScore W2987272246C164705383 @default.
- W2987272246 hasConceptScore W2987272246C2780074459 @default.
- W2987272246 hasConceptScore W2987272246C2987595161 @default.
- W2987272246 hasConceptScore W2987272246C33923547 @default.
- W2987272246 hasConceptScore W2987272246C41008148 @default.
- W2987272246 hasConceptScore W2987272246C71924100 @default.
- W2987272246 hasLocation W29872722461 @default.
- W2987272246 hasOpenAccess W2987272246 @default.
- W2987272246 hasPrimaryLocation W29872722461 @default.
- W2987272246 hasRelatedWork W2961085424 @default.
- W2987272246 hasRelatedWork W3046775127 @default.
- W2987272246 hasRelatedWork W3107474891 @default.
- W2987272246 hasRelatedWork W4205958290 @default.
- W2987272246 hasRelatedWork W4213142596 @default.
- W2987272246 hasRelatedWork W4285260836 @default.
- W2987272246 hasRelatedWork W4286629047 @default.
- W2987272246 hasRelatedWork W4306321456 @default.
- W2987272246 hasRelatedWork W4306674287 @default.
- W2987272246 hasRelatedWork W4224009465 @default.
- W2987272246 hasVolume "102" @default.
- W2987272246 isParatext "false" @default.
- W2987272246 isRetracted "false" @default.
- W2987272246 magId "2987272246" @default.
- W2987272246 workType "article" @default.