Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987281750> ?p ?o ?g. }
- W2987281750 endingPage "100109" @default.
- W2987281750 startingPage "100109" @default.
- W2987281750 abstract "Weather is well recognized as a significant environmental factor contributing to higher risk of road crashes. In the conventional road safety studies, weather effects had been set out either based on the instant weather conditions recorded by the police officer attained or the average of meteorological observations over a relatively long time period, such as daily, weekly or even monthly, etc. To the best of our knowledge, it is rare that the lag effect of weather in the preceding period on the crash risk in the current period was attempted. With the use of high-resolution meteorological data in very short time interval, it is possible to evaluate the role of lagged weather effect on safety. In this study, we propose a novel distributed lag non-linear model (DLNM), integrated with case-crossover design, to evaluate the lag effect of weather on crash incidence. The proposed modelling framework could describe the non-linear relationship between weather and crash and the lag effects. Also, the possible over-dispersion and autocorrelation of the time-series weather and crash data can be controlled for. The model was estimated using an integrated meteorological, traffic and crash dataset in Hong Kong. For instances, high resolution data on temperature, humidity, rain intensity and wind speed in 1-hour interval was available. The bi-dimensional exposure-lag-response surfaces are established to visualize the varying effects of possible weather factors on crash risk, with respect to the lag size. Such relationship between effect size and lag size is often overlooked in the literatures. Results indicate that model with 4 degrees of freedom for both weather condition (knots at equal spaces) and lag time (knots at equal intervals) best fit with the observations, in accordance to Quasi-likelihood Akaike information criterion (Q-AIC). Then, stratified analyses are conducted to evaluate the difference in the association among different clusters. Findings should shed light on the modelling of non-linear exposure-response relationship and lag effects in traffic safety time series analysis." @default.
- W2987281750 created "2019-11-22" @default.
- W2987281750 creator A5015912289 @default.
- W2987281750 creator A5016357519 @default.
- W2987281750 creator A5027439901 @default.
- W2987281750 creator A5039602341 @default.
- W2987281750 creator A5043742578 @default.
- W2987281750 creator A5061901723 @default.
- W2987281750 creator A5079920214 @default.
- W2987281750 date "2019-12-01" @default.
- W2987281750 modified "2023-09-28" @default.
- W2987281750 title "Hourly associations between weather factors and traffic crashes: Non-linear and lag effects" @default.
- W2987281750 cites W1497458040 @default.
- W2987281750 cites W1964215189 @default.
- W2987281750 cites W1969794058 @default.
- W2987281750 cites W1980573057 @default.
- W2987281750 cites W1999867193 @default.
- W2987281750 cites W2000385995 @default.
- W2987281750 cites W2006203329 @default.
- W2987281750 cites W2007473578 @default.
- W2987281750 cites W2007768303 @default.
- W2987281750 cites W2016441917 @default.
- W2987281750 cites W2023496573 @default.
- W2987281750 cites W2033873777 @default.
- W2987281750 cites W2036554549 @default.
- W2987281750 cites W2047636878 @default.
- W2987281750 cites W2067076876 @default.
- W2987281750 cites W2072293025 @default.
- W2987281750 cites W2078025045 @default.
- W2987281750 cites W2080805749 @default.
- W2987281750 cites W2099232952 @default.
- W2987281750 cites W2108192761 @default.
- W2987281750 cites W2117520845 @default.
- W2987281750 cites W2124129856 @default.
- W2987281750 cites W2144418705 @default.
- W2987281750 cites W2150180906 @default.
- W2987281750 cites W2160374395 @default.
- W2987281750 cites W2162064988 @default.
- W2987281750 cites W2326202155 @default.
- W2987281750 cites W2548637385 @default.
- W2987281750 cites W2624649847 @default.
- W2987281750 cites W27502151 @default.
- W2987281750 cites W2755600837 @default.
- W2987281750 cites W2782006619 @default.
- W2987281750 cites W2791847056 @default.
- W2987281750 cites W2793297958 @default.
- W2987281750 cites W2795677885 @default.
- W2987281750 cites W2871558471 @default.
- W2987281750 cites W2883066229 @default.
- W2987281750 cites W2883751909 @default.
- W2987281750 cites W2896053480 @default.
- W2987281750 cites W2899731239 @default.
- W2987281750 cites W2969194299 @default.
- W2987281750 cites W4294826717 @default.
- W2987281750 doi "https://doi.org/10.1016/j.amar.2019.100109" @default.
- W2987281750 hasPublicationYear "2019" @default.
- W2987281750 type Work @default.
- W2987281750 sameAs 2987281750 @default.
- W2987281750 citedByCount "23" @default.
- W2987281750 countsByYear W29872817502020 @default.
- W2987281750 countsByYear W29872817502021 @default.
- W2987281750 countsByYear W29872817502022 @default.
- W2987281750 countsByYear W29872817502023 @default.
- W2987281750 crossrefType "journal-article" @default.
- W2987281750 hasAuthorship W2987281750A5015912289 @default.
- W2987281750 hasAuthorship W2987281750A5016357519 @default.
- W2987281750 hasAuthorship W2987281750A5027439901 @default.
- W2987281750 hasAuthorship W2987281750A5039602341 @default.
- W2987281750 hasAuthorship W2987281750A5043742578 @default.
- W2987281750 hasAuthorship W2987281750A5061901723 @default.
- W2987281750 hasAuthorship W2987281750A5079920214 @default.
- W2987281750 hasConcept C153294291 @default.
- W2987281750 hasConcept C161067210 @default.
- W2987281750 hasConcept C183469790 @default.
- W2987281750 hasConcept C199360897 @default.
- W2987281750 hasConcept C205649164 @default.
- W2987281750 hasConcept C3017944768 @default.
- W2987281750 hasConcept C31258907 @default.
- W2987281750 hasConcept C39432304 @default.
- W2987281750 hasConcept C41008148 @default.
- W2987281750 hasConcept C71924100 @default.
- W2987281750 hasConcept C75778745 @default.
- W2987281750 hasConcept C99454951 @default.
- W2987281750 hasConceptScore W2987281750C153294291 @default.
- W2987281750 hasConceptScore W2987281750C161067210 @default.
- W2987281750 hasConceptScore W2987281750C183469790 @default.
- W2987281750 hasConceptScore W2987281750C199360897 @default.
- W2987281750 hasConceptScore W2987281750C205649164 @default.
- W2987281750 hasConceptScore W2987281750C3017944768 @default.
- W2987281750 hasConceptScore W2987281750C31258907 @default.
- W2987281750 hasConceptScore W2987281750C39432304 @default.
- W2987281750 hasConceptScore W2987281750C41008148 @default.
- W2987281750 hasConceptScore W2987281750C71924100 @default.
- W2987281750 hasConceptScore W2987281750C75778745 @default.
- W2987281750 hasConceptScore W2987281750C99454951 @default.
- W2987281750 hasFunder F4320321001 @default.
- W2987281750 hasFunder F4320322598 @default.
- W2987281750 hasLocation W29872817501 @default.