Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987291281> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2987291281 endingPage "727" @default.
- W2987291281 startingPage "716" @default.
- W2987291281 abstract "Purpose The use of linear regression analysis is common in the social sciences. The purpose of this paper is to show the advantage of a qualitative research method, namely, structured qualitative analysis (SQA), over the linear regression method by using different characteristics of data. Design/methodology/approach Data were gathered from a study of online consumer behavior in Taiwan. The authors changed the content of the data to have different sets of data. These data sets were used to demonstrate how SQA and linear regression works individually, and to contrast the empirical analyses and empirical results from linear regression and SQA. Findings The linear regression method uses one equation to model different characteristics of data. When facing a data set containing a big and a small size of different characteristics, linear regression tends to provide an equation by modeling the characteristics of the big size data and subsuming those of the small size. When facing a data set containing similar sizes of data with different characteristics, linear regression tends to provide an equation by averaging these data. The major concern is that the one equation may not be able to reflect the data of various characteristics (different values of independent variables) that result in the same outcome (the same value of dependent variable). In contrast, SQA can identify various variable combinations (multiple relationships) leading to the same outcome. SQA provided multiple relationships to represent different sizes of data with different characteristics so it created consistent empirical results. Research limitations/implications Two research methods work differently. The popular linear regression tends to use one equation to model different sizes and characteristics of data. The single equation may not be able to cover different behaviors but may lead to the same outcome. Instead, SQA provides multiple relationships for different sizes of data with different characteristics. The analyses are more consistent and the results are more appropriate. The academics may re-think the existing literature using linear regression. It would be interesting to see if there are new findings for similar problems by using SQA. The practitioners have a new method to model real world problems and to understand different possible combinations of variables leading to the same outcome. Even the relationship obtained from a small data set may be very valuable to practitioners. Originality/value This paper compared online consumer behavior by using two research methods to analyze different data sets. The paper offered the manipulation of real data sets to create different data sizes of different characteristics. The variations in empirical results from both methods due to the various data sets facilitate the comparison of both methods. Hence, this paper can serve as a complement to the existing literature, focusing on the justification of research methods and on limitations of linear regression." @default.
- W2987291281 created "2019-11-22" @default.
- W2987291281 creator A5001603846 @default.
- W2987291281 creator A5049428656 @default.
- W2987291281 date "2019-11-06" @default.
- W2987291281 modified "2023-10-16" @default.
- W2987291281 title "A comparative study of online consumer behavior: a tale of two research methods" @default.
- W2987291281 cites W1982008157 @default.
- W2987291281 cites W2009086739 @default.
- W2987291281 cites W2037984606 @default.
- W2987291281 cites W2040586266 @default.
- W2987291281 cites W2056047062 @default.
- W2987291281 cites W2056149633 @default.
- W2987291281 cites W2091957194 @default.
- W2987291281 cites W2131931917 @default.
- W2987291281 cites W2160497216 @default.
- W2987291281 cites W2214362550 @default.
- W2987291281 cites W2408721053 @default.
- W2987291281 cites W2474510059 @default.
- W2987291281 cites W2527943531 @default.
- W2987291281 cites W2569485771 @default.
- W2987291281 cites W2575590048 @default.
- W2987291281 cites W2622416101 @default.
- W2987291281 cites W2624931179 @default.
- W2987291281 cites W2791181247 @default.
- W2987291281 cites W2893966592 @default.
- W2987291281 cites W2898023208 @default.
- W2987291281 cites W2905236737 @default.
- W2987291281 cites W2971058692 @default.
- W2987291281 cites W3121267618 @default.
- W2987291281 cites W3121649656 @default.
- W2987291281 cites W4240809722 @default.
- W2987291281 cites W4251252331 @default.
- W2987291281 cites W4256541692 @default.
- W2987291281 doi "https://doi.org/10.1108/ijoem-06-2019-0417" @default.
- W2987291281 hasPublicationYear "2019" @default.
- W2987291281 type Work @default.
- W2987291281 sameAs 2987291281 @default.
- W2987291281 citedByCount "4" @default.
- W2987291281 countsByYear W29872912812020 @default.
- W2987291281 countsByYear W29872912812021 @default.
- W2987291281 crossrefType "journal-article" @default.
- W2987291281 hasAuthorship W2987291281A5001603846 @default.
- W2987291281 hasAuthorship W2987291281A5049428656 @default.
- W2987291281 hasConcept C105795698 @default.
- W2987291281 hasConcept C120936955 @default.
- W2987291281 hasConcept C149782125 @default.
- W2987291281 hasConcept C152877465 @default.
- W2987291281 hasConcept C154945302 @default.
- W2987291281 hasConcept C27574286 @default.
- W2987291281 hasConcept C2776502983 @default.
- W2987291281 hasConcept C33923547 @default.
- W2987291281 hasConcept C41008148 @default.
- W2987291281 hasConcept C48921125 @default.
- W2987291281 hasConcept C58489278 @default.
- W2987291281 hasConcept C71104824 @default.
- W2987291281 hasConceptScore W2987291281C105795698 @default.
- W2987291281 hasConceptScore W2987291281C120936955 @default.
- W2987291281 hasConceptScore W2987291281C149782125 @default.
- W2987291281 hasConceptScore W2987291281C152877465 @default.
- W2987291281 hasConceptScore W2987291281C154945302 @default.
- W2987291281 hasConceptScore W2987291281C27574286 @default.
- W2987291281 hasConceptScore W2987291281C2776502983 @default.
- W2987291281 hasConceptScore W2987291281C33923547 @default.
- W2987291281 hasConceptScore W2987291281C41008148 @default.
- W2987291281 hasConceptScore W2987291281C48921125 @default.
- W2987291281 hasConceptScore W2987291281C58489278 @default.
- W2987291281 hasConceptScore W2987291281C71104824 @default.
- W2987291281 hasIssue "4" @default.
- W2987291281 hasLocation W29872912811 @default.
- W2987291281 hasOpenAccess W2987291281 @default.
- W2987291281 hasPrimaryLocation W29872912811 @default.
- W2987291281 hasRelatedWork W1992972168 @default.
- W2987291281 hasRelatedWork W2023475031 @default.
- W2987291281 hasRelatedWork W2048754675 @default.
- W2987291281 hasRelatedWork W2603635278 @default.
- W2987291281 hasRelatedWork W3188410990 @default.
- W2987291281 hasRelatedWork W4312463433 @default.
- W2987291281 hasRelatedWork W4312667354 @default.
- W2987291281 hasRelatedWork W4380592025 @default.
- W2987291281 hasRelatedWork W2188151696 @default.
- W2987291281 hasRelatedWork W575198667 @default.
- W2987291281 hasVolume "15" @default.
- W2987291281 isParatext "false" @default.
- W2987291281 isRetracted "false" @default.
- W2987291281 magId "2987291281" @default.
- W2987291281 workType "article" @default.