Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987498210> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2987498210 endingPage "160" @default.
- W2987498210 startingPage "150" @default.
- W2987498210 abstract "Machine Learning is one of the top growing fields of recent times and is applied in various areas such as healthcare. In this article, machine learning is used to study the patients suffering from either gout or leukemia, but not both, with the use of their uric acid signatures. The study of the uric acid signatures involves the application of supervised machine learning, using an artificial neural network (ANN) with one hidden layer and sigmoid activation function, to classify patients and the calculation of the accuracy with k-fold cross validation. We identify the number of nodes in the hidden layer and a value for the weight decay parameter that are optimal in terms of accuracy and ensure good performance." @default.
- W2987498210 created "2019-11-22" @default.
- W2987498210 creator A5022588695 @default.
- W2987498210 creator A5050555385 @default.
- W2987498210 date "2018-01-01" @default.
- W2987498210 modified "2023-09-24" @default.
- W2987498210 title "Classifying Leukemia and Gout Patients with Neural Networks." @default.
- W2987498210 hasPublicationYear "2018" @default.
- W2987498210 type Work @default.
- W2987498210 sameAs 2987498210 @default.
- W2987498210 citedByCount "0" @default.
- W2987498210 crossrefType "journal-article" @default.
- W2987498210 hasAuthorship W2987498210A5022588695 @default.
- W2987498210 hasAuthorship W2987498210A5050555385 @default.
- W2987498210 hasConcept C119857082 @default.
- W2987498210 hasConcept C126322002 @default.
- W2987498210 hasConcept C154945302 @default.
- W2987498210 hasConcept C2779881121 @default.
- W2987498210 hasConcept C2780402116 @default.
- W2987498210 hasConcept C41008148 @default.
- W2987498210 hasConcept C50644808 @default.
- W2987498210 hasConcept C71924100 @default.
- W2987498210 hasConcept C81388566 @default.
- W2987498210 hasConceptScore W2987498210C119857082 @default.
- W2987498210 hasConceptScore W2987498210C126322002 @default.
- W2987498210 hasConceptScore W2987498210C154945302 @default.
- W2987498210 hasConceptScore W2987498210C2779881121 @default.
- W2987498210 hasConceptScore W2987498210C2780402116 @default.
- W2987498210 hasConceptScore W2987498210C41008148 @default.
- W2987498210 hasConceptScore W2987498210C50644808 @default.
- W2987498210 hasConceptScore W2987498210C71924100 @default.
- W2987498210 hasConceptScore W2987498210C81388566 @default.
- W2987498210 hasLocation W29874982101 @default.
- W2987498210 hasOpenAccess W2987498210 @default.
- W2987498210 hasPrimaryLocation W29874982101 @default.
- W2987498210 hasRelatedWork W1531900607 @default.
- W2987498210 hasRelatedWork W1548780694 @default.
- W2987498210 hasRelatedWork W2027403201 @default.
- W2987498210 hasRelatedWork W2030414968 @default.
- W2987498210 hasRelatedWork W2169405133 @default.
- W2987498210 hasRelatedWork W2365854482 @default.
- W2987498210 hasRelatedWork W2734833785 @default.
- W2987498210 hasRelatedWork W2735762027 @default.
- W2987498210 hasRelatedWork W2754799147 @default.
- W2987498210 hasRelatedWork W2886664166 @default.
- W2987498210 hasRelatedWork W2893960396 @default.
- W2987498210 hasRelatedWork W2912629619 @default.
- W2987498210 hasRelatedWork W2945038541 @default.
- W2987498210 hasRelatedWork W2997830311 @default.
- W2987498210 hasRelatedWork W3107830592 @default.
- W2987498210 hasRelatedWork W3135311540 @default.
- W2987498210 hasRelatedWork W2182782562 @default.
- W2987498210 hasRelatedWork W2186192338 @default.
- W2987498210 hasRelatedWork W2267701908 @default.
- W2987498210 hasRelatedWork W2487142858 @default.
- W2987498210 isParatext "false" @default.
- W2987498210 isRetracted "false" @default.
- W2987498210 magId "2987498210" @default.
- W2987498210 workType "article" @default.