Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987613272> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2987613272 endingPage "S903" @default.
- W2987613272 startingPage "S903" @default.
- W2987613272 abstract "Abstract In mammals, the lack of accurate biomarkers for biological age is a current limitation to identifying novel aging interventions. Molecular biomarkers including DNA methylation hold promise but are invasive and currently expensive. The Frailty Index (FI) quantifies the accumulation of health-related deficits and is fast, cheap, and non-invasive. Studies have demonstrated that FI correlates with age and mortality risk in mice and humans. However, the FI has not been modelled to directly predict biological age or life expectancy. We tracked aging male C57BL/6 mice until their natural deaths, scoring them longitudinally with the FI. We find that FI score correlates with and is predictive of age and that some but not all parameters of the FI are individually well-correlated with age. To better predict chronological age, we performed an elastic net regression on the FI termed FRIGHT (Frailty Inferred Geriatric Health Timeline) Age. FRIGHT Age is a strong predictor of age (r2=0.73, median error=47.5 days), but is not superior to chronological age at predicting life expectancy. To better predict mortality, we built a random forest model termed the AFRAID (Analysis of Frailty and Death) score, which predicted survival at multiple ages (r2=0.375, median error = 46.4 days). The FRIGHT and AFRAID models were responsive to chronic treatment with enalapril (30mg/kg/day), an angiotensin converting enzyme inhibitor that extends healthspan, and methionine restriction, a dietary intervention that extends healthspan and lifespan. Our findings underscore the value of assessing non-invasive biomarkers for aging research and may help speed the identification of aging interventions." @default.
- W2987613272 created "2019-11-22" @default.
- W2987613272 creator A5001283900 @default.
- W2987613272 creator A5044537891 @default.
- W2987613272 creator A5044576485 @default.
- W2987613272 creator A5047825961 @default.
- W2987613272 creator A5062662633 @default.
- W2987613272 creator A5080624755 @default.
- W2987613272 creator A5081264656 @default.
- W2987613272 creator A5088106803 @default.
- W2987613272 date "2019-11-01" @default.
- W2987613272 modified "2023-09-26" @default.
- W2987613272 title "MACHINE LEARNING ANALYSIS OF MOUSE FRAILTY FOR PREDICTION OF BIOLOGICAL AGE AND LIFE EXPECTANCY" @default.
- W2987613272 doi "https://doi.org/10.1093/geroni/igz038.3299" @default.
- W2987613272 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6846824" @default.
- W2987613272 hasPublicationYear "2019" @default.
- W2987613272 type Work @default.
- W2987613272 sameAs 2987613272 @default.
- W2987613272 citedByCount "5" @default.
- W2987613272 countsByYear W29876132722020 @default.
- W2987613272 countsByYear W29876132722022 @default.
- W2987613272 crossrefType "journal-article" @default.
- W2987613272 hasAuthorship W2987613272A5001283900 @default.
- W2987613272 hasAuthorship W2987613272A5044537891 @default.
- W2987613272 hasAuthorship W2987613272A5044576485 @default.
- W2987613272 hasAuthorship W2987613272A5047825961 @default.
- W2987613272 hasAuthorship W2987613272A5062662633 @default.
- W2987613272 hasAuthorship W2987613272A5080624755 @default.
- W2987613272 hasAuthorship W2987613272A5081264656 @default.
- W2987613272 hasAuthorship W2987613272A5088106803 @default.
- W2987613272 hasBestOaLocation W29876132721 @default.
- W2987613272 hasConcept C118552586 @default.
- W2987613272 hasConcept C133925201 @default.
- W2987613272 hasConcept C144024400 @default.
- W2987613272 hasConcept C149923435 @default.
- W2987613272 hasConcept C27415008 @default.
- W2987613272 hasConcept C2908647359 @default.
- W2987613272 hasConcept C2909041561 @default.
- W2987613272 hasConcept C2991747559 @default.
- W2987613272 hasConcept C71924100 @default.
- W2987613272 hasConcept C74909509 @default.
- W2987613272 hasConcept C99454951 @default.
- W2987613272 hasConceptScore W2987613272C118552586 @default.
- W2987613272 hasConceptScore W2987613272C133925201 @default.
- W2987613272 hasConceptScore W2987613272C144024400 @default.
- W2987613272 hasConceptScore W2987613272C149923435 @default.
- W2987613272 hasConceptScore W2987613272C27415008 @default.
- W2987613272 hasConceptScore W2987613272C2908647359 @default.
- W2987613272 hasConceptScore W2987613272C2909041561 @default.
- W2987613272 hasConceptScore W2987613272C2991747559 @default.
- W2987613272 hasConceptScore W2987613272C71924100 @default.
- W2987613272 hasConceptScore W2987613272C74909509 @default.
- W2987613272 hasConceptScore W2987613272C99454951 @default.
- W2987613272 hasIssue "Supplement_1" @default.
- W2987613272 hasLocation W29876132721 @default.
- W2987613272 hasLocation W29876132722 @default.
- W2987613272 hasOpenAccess W2987613272 @default.
- W2987613272 hasPrimaryLocation W29876132721 @default.
- W2987613272 hasRelatedWork W1993116903 @default.
- W2987613272 hasRelatedWork W2066655417 @default.
- W2987613272 hasRelatedWork W2074202553 @default.
- W2987613272 hasRelatedWork W2086581780 @default.
- W2987613272 hasRelatedWork W2113576655 @default.
- W2987613272 hasRelatedWork W2114266977 @default.
- W2987613272 hasRelatedWork W2794396943 @default.
- W2987613272 hasRelatedWork W2905629353 @default.
- W2987613272 hasRelatedWork W3128757155 @default.
- W2987613272 hasRelatedWork W3193662951 @default.
- W2987613272 hasVolume "3" @default.
- W2987613272 isParatext "false" @default.
- W2987613272 isRetracted "false" @default.
- W2987613272 magId "2987613272" @default.
- W2987613272 workType "article" @default.