Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987642308> ?p ?o ?g. }
- W2987642308 endingPage "7284" @default.
- W2987642308 startingPage "7277" @default.
- W2987642308 abstract "Understanding the relationships between molecular properties and device parameters is highly desired not only to improve the overall performance of an organic solar cell but also to fulfill the requirements of a device for a particular application such as solar-to-fuel energy conversion (high open-circuit voltage (VOC)) or solar window applications (high short circuit current (JSC)). In this work, a series of machine learning models are built for three important device characteristics (VOC, JSC, and fill factor) using 13 crucial molecular properties as descriptors, resulting in an impressive predictive performance (r = 0.7). These models may play a vital role in designing promising organic materials for a specific photovoltaic application with high VOC/JSC. The importance of descriptors for each device parameter is unraveled, which may assist in tuning them and improve understanding of the energy conversion process." @default.
- W2987642308 created "2019-11-22" @default.
- W2987642308 creator A5007158194 @default.
- W2987642308 creator A5079402670 @default.
- W2987642308 date "2019-11-08" @default.
- W2987642308 modified "2023-10-14" @default.
- W2987642308 title "Unraveling Correlations between Molecular Properties and Device Parameters of Organic Solar Cells Using Machine Learning" @default.
- W2987642308 cites W1997069344 @default.
- W2987642308 cites W2008025023 @default.
- W2987642308 cites W2017331980 @default.
- W2987642308 cites W2047951832 @default.
- W2987642308 cites W2102636708 @default.
- W2987642308 cites W2120445734 @default.
- W2987642308 cites W2124191661 @default.
- W2987642308 cites W2126595516 @default.
- W2987642308 cites W2157866962 @default.
- W2987642308 cites W2159445580 @default.
- W2987642308 cites W2296460923 @default.
- W2987642308 cites W2312919397 @default.
- W2987642308 cites W2318784685 @default.
- W2987642308 cites W2330711390 @default.
- W2987642308 cites W2416639005 @default.
- W2987642308 cites W2478294658 @default.
- W2987642308 cites W2530506319 @default.
- W2987642308 cites W2531647489 @default.
- W2987642308 cites W2553969093 @default.
- W2987642308 cites W2574288763 @default.
- W2987642308 cites W2598705626 @default.
- W2987642308 cites W2731260437 @default.
- W2987642308 cites W2735362277 @default.
- W2987642308 cites W2765398234 @default.
- W2987642308 cites W2767639470 @default.
- W2987642308 cites W2775684663 @default.
- W2987642308 cites W2797333726 @default.
- W2987642308 cites W2800793736 @default.
- W2987642308 cites W2800899574 @default.
- W2987642308 cites W2802643674 @default.
- W2987642308 cites W2807070436 @default.
- W2987642308 cites W2810220676 @default.
- W2987642308 cites W2883583109 @default.
- W2987642308 cites W2884386533 @default.
- W2987642308 cites W2886600502 @default.
- W2987642308 cites W2887524782 @default.
- W2987642308 cites W2888395196 @default.
- W2987642308 cites W2888738879 @default.
- W2987642308 cites W2889969866 @default.
- W2987642308 cites W2895491144 @default.
- W2987642308 cites W2898907833 @default.
- W2987642308 cites W2913016420 @default.
- W2987642308 cites W2913034097 @default.
- W2987642308 cites W2914537386 @default.
- W2987642308 cites W2914552430 @default.
- W2987642308 cites W2922112571 @default.
- W2987642308 cites W2927698283 @default.
- W2987642308 cites W2943652240 @default.
- W2987642308 cites W2943843211 @default.
- W2987642308 cites W2944670954 @default.
- W2987642308 cites W2947586232 @default.
- W2987642308 cites W2948272487 @default.
- W2987642308 cites W2948704225 @default.
- W2987642308 cites W2950708653 @default.
- W2987642308 cites W2955588401 @default.
- W2987642308 cites W2963013917 @default.
- W2987642308 cites W2963485997 @default.
- W2987642308 cites W2971599791 @default.
- W2987642308 cites W2972987306 @default.
- W2987642308 cites W2974661190 @default.
- W2987642308 cites W3021518424 @default.
- W2987642308 doi "https://doi.org/10.1021/acs.jpclett.9b02772" @default.
- W2987642308 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31702163" @default.
- W2987642308 hasPublicationYear "2019" @default.
- W2987642308 type Work @default.
- W2987642308 sameAs 2987642308 @default.
- W2987642308 citedByCount "57" @default.
- W2987642308 countsByYear W29876423082020 @default.
- W2987642308 countsByYear W29876423082021 @default.
- W2987642308 countsByYear W29876423082022 @default.
- W2987642308 countsByYear W29876423082023 @default.
- W2987642308 crossrefType "journal-article" @default.
- W2987642308 hasAuthorship W2987642308A5007158194 @default.
- W2987642308 hasAuthorship W2987642308A5079402670 @default.
- W2987642308 hasConcept C111919701 @default.
- W2987642308 hasConcept C119599485 @default.
- W2987642308 hasConcept C127413603 @default.
- W2987642308 hasConcept C165801399 @default.
- W2987642308 hasConcept C18762648 @default.
- W2987642308 hasConcept C192562407 @default.
- W2987642308 hasConcept C2780824857 @default.
- W2987642308 hasConcept C41008148 @default.
- W2987642308 hasConcept C41291067 @default.
- W2987642308 hasConcept C49040817 @default.
- W2987642308 hasConcept C541104983 @default.
- W2987642308 hasConcept C78519656 @default.
- W2987642308 hasConcept C91614233 @default.
- W2987642308 hasConcept C98045186 @default.
- W2987642308 hasConceptScore W2987642308C111919701 @default.
- W2987642308 hasConceptScore W2987642308C119599485 @default.
- W2987642308 hasConceptScore W2987642308C127413603 @default.