Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987709164> ?p ?o ?g. }
- W2987709164 endingPage "133" @default.
- W2987709164 startingPage "119" @default.
- W2987709164 abstract "K-complexes are important transient bio-signal waveforms in sleep stage 2. Detecting k-complexes visually requires a highly qualified expert. In this study, an efficient method for detecting k-complexes from electroencephalogram (EEG) signals based on fractal and frequency features coupled with an ensemble model of three classifiers is presented. EEG signals are first partitioned into segments, using a sliding window technique. Then, each EEG segment is decomposed using a dual-tree complex wavelet transform (DT-CWT) to a set of real and imaginary parts. A total of 10 sub-bands are used based on four levels of decomposition, and the high sub-bands are considered in this research for feature extraction. Fractal and frequency features based on DT-CWT and Higuchi’s algorithm are pulled out from each sub-band and then forwarded to an ensemble classifier to detect k-complexes. A twelve-feature set is finally used to detect the sleep EEG characteristics using the ensemble model. The ensemble model is designed using a combination of three classification techniques including a least square support vector machine (LS-SVM), k-means and Naïve Bayes. The proposed method for the detection of the k-complexes achieves an average accuracy rate of 97.3 %. The results from the ensemble classifier were compared with those by individual classifiers. Comparisons were also made with existing k-complexes detection approaches for which the same datasets were used. The results demonstrate that the proposed approach is efficient in identifying the k-complexes in EEG signals; it yields optimal results with a window size 0.5 s. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders." @default.
- W2987709164 created "2019-11-22" @default.
- W2987709164 creator A5052760802 @default.
- W2987709164 creator A5060975231 @default.
- W2987709164 creator A5061933200 @default.
- W2987709164 date "2019-12-01" @default.
- W2987709164 modified "2023-10-17" @default.
- W2987709164 title "K-complexes Detection in EEG Signals using Fractal and Frequency Features Coupled with an Ensemble Classification Model" @default.
- W2987709164 cites W1443364857 @default.
- W2987709164 cites W1524345901 @default.
- W2987709164 cites W1690323875 @default.
- W2987709164 cites W1968059839 @default.
- W2987709164 cites W1976293334 @default.
- W2987709164 cites W1978347377 @default.
- W2987709164 cites W1983251083 @default.
- W2987709164 cites W1984424958 @default.
- W2987709164 cites W1994233698 @default.
- W2987709164 cites W1997281209 @default.
- W2987709164 cites W2011484846 @default.
- W2987709164 cites W2012533813 @default.
- W2987709164 cites W2016351790 @default.
- W2987709164 cites W2018332268 @default.
- W2987709164 cites W2064263898 @default.
- W2987709164 cites W2065454702 @default.
- W2987709164 cites W2077746856 @default.
- W2987709164 cites W2083192860 @default.
- W2987709164 cites W2089554760 @default.
- W2987709164 cites W2091638337 @default.
- W2987709164 cites W2112803909 @default.
- W2987709164 cites W2113002024 @default.
- W2987709164 cites W2156770021 @default.
- W2987709164 cites W2163933103 @default.
- W2987709164 cites W2324986914 @default.
- W2987709164 cites W2327147332 @default.
- W2987709164 cites W2335034010 @default.
- W2987709164 cites W2339955186 @default.
- W2987709164 cites W2347748326 @default.
- W2987709164 cites W2486321123 @default.
- W2987709164 cites W2560275849 @default.
- W2987709164 cites W2583531327 @default.
- W2987709164 cites W2584920374 @default.
- W2987709164 cites W2730865192 @default.
- W2987709164 cites W2775465406 @default.
- W2987709164 cites W2782079669 @default.
- W2987709164 cites W2896723775 @default.
- W2987709164 cites W2901948205 @default.
- W2987709164 cites W2946966984 @default.
- W2987709164 cites W828992678 @default.
- W2987709164 doi "https://doi.org/10.1016/j.neuroscience.2019.10.034" @default.
- W2987709164 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31682947" @default.
- W2987709164 hasPublicationYear "2019" @default.
- W2987709164 type Work @default.
- W2987709164 sameAs 2987709164 @default.
- W2987709164 citedByCount "15" @default.
- W2987709164 countsByYear W29877091642020 @default.
- W2987709164 countsByYear W29877091642021 @default.
- W2987709164 countsByYear W29877091642022 @default.
- W2987709164 countsByYear W29877091642023 @default.
- W2987709164 crossrefType "journal-article" @default.
- W2987709164 hasAuthorship W2987709164A5052760802 @default.
- W2987709164 hasAuthorship W2987709164A5060975231 @default.
- W2987709164 hasAuthorship W2987709164A5061933200 @default.
- W2987709164 hasConcept C118552586 @default.
- W2987709164 hasConcept C12267149 @default.
- W2987709164 hasConcept C153180895 @default.
- W2987709164 hasConcept C154945302 @default.
- W2987709164 hasConcept C15744967 @default.
- W2987709164 hasConcept C196216189 @default.
- W2987709164 hasConcept C2777885455 @default.
- W2987709164 hasConcept C28490314 @default.
- W2987709164 hasConcept C33923547 @default.
- W2987709164 hasConcept C41008148 @default.
- W2987709164 hasConcept C46286280 @default.
- W2987709164 hasConcept C47432892 @default.
- W2987709164 hasConcept C52001869 @default.
- W2987709164 hasConcept C522805319 @default.
- W2987709164 hasConcept C52622490 @default.
- W2987709164 hasConcept C95623464 @default.
- W2987709164 hasConceptScore W2987709164C118552586 @default.
- W2987709164 hasConceptScore W2987709164C12267149 @default.
- W2987709164 hasConceptScore W2987709164C153180895 @default.
- W2987709164 hasConceptScore W2987709164C154945302 @default.
- W2987709164 hasConceptScore W2987709164C15744967 @default.
- W2987709164 hasConceptScore W2987709164C196216189 @default.
- W2987709164 hasConceptScore W2987709164C2777885455 @default.
- W2987709164 hasConceptScore W2987709164C28490314 @default.
- W2987709164 hasConceptScore W2987709164C33923547 @default.
- W2987709164 hasConceptScore W2987709164C41008148 @default.
- W2987709164 hasConceptScore W2987709164C46286280 @default.
- W2987709164 hasConceptScore W2987709164C47432892 @default.
- W2987709164 hasConceptScore W2987709164C52001869 @default.
- W2987709164 hasConceptScore W2987709164C522805319 @default.
- W2987709164 hasConceptScore W2987709164C52622490 @default.
- W2987709164 hasConceptScore W2987709164C95623464 @default.
- W2987709164 hasLocation W29877091641 @default.
- W2987709164 hasLocation W29877091642 @default.
- W2987709164 hasOpenAccess W2987709164 @default.
- W2987709164 hasPrimaryLocation W29877091641 @default.