Matches in SemOpenAlex for { <https://semopenalex.org/work/W2987723716> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2987723716 abstract "Very High Resolution (VHR) remote sensing optical imagery is a huge source of information that can be utilized for earthquake damage detection and assessment. Time critical task such as performing the damage assessment, providing immediate delivery of relief assistance require immediate response; however, processing voluminous VHR imagery using highly accurate, but computationally expensive deep learning algorithms demands the High Performance Computing (HPC) power. To maximize the accuracy, deep convolution neural network (CNN) model is designed especially for the earthquake damage detection using remote sensing data and implemented using high performance GPU without compromising with the execution time. Geoeye1 VHR disaster images of the Haiti earthquake occurred in year 2010 is used for analysis. Proposed model provides good accuracy for damage detection; also significant execution speed is observed on GPU K80 High Performance Computing (HPC) platform." @default.
- W2987723716 created "2019-11-22" @default.
- W2987723716 creator A5052217638 @default.
- W2987723716 creator A5056007385 @default.
- W2987723716 creator A5087424979 @default.
- W2987723716 creator A5089748744 @default.
- W2987723716 date "2019-07-01" @default.
- W2987723716 modified "2023-10-02" @default.
- W2987723716 title "Rapid Earthquake Damage Detection Using Deep Learning from VHR Remote Sensing Images" @default.
- W2987723716 cites W1966580635 @default.
- W2987723716 cites W2015591054 @default.
- W2987723716 cites W2028104478 @default.
- W2987723716 cites W2082699349 @default.
- W2987723716 cites W2135228726 @default.
- W2987723716 cites W2253590344 @default.
- W2987723716 cites W2412588858 @default.
- W2987723716 cites W2593771152 @default.
- W2987723716 cites W2604086375 @default.
- W2987723716 doi "https://doi.org/10.1109/igarss.2019.8898147" @default.
- W2987723716 hasPublicationYear "2019" @default.
- W2987723716 type Work @default.
- W2987723716 sameAs 2987723716 @default.
- W2987723716 citedByCount "9" @default.
- W2987723716 countsByYear W29877237162020 @default.
- W2987723716 countsByYear W29877237162021 @default.
- W2987723716 countsByYear W29877237162023 @default.
- W2987723716 crossrefType "proceedings-article" @default.
- W2987723716 hasAuthorship W2987723716A5052217638 @default.
- W2987723716 hasAuthorship W2987723716A5056007385 @default.
- W2987723716 hasAuthorship W2987723716A5087424979 @default.
- W2987723716 hasAuthorship W2987723716A5089748744 @default.
- W2987723716 hasConcept C108583219 @default.
- W2987723716 hasConcept C127313418 @default.
- W2987723716 hasConcept C154945302 @default.
- W2987723716 hasConcept C162324750 @default.
- W2987723716 hasConcept C187736073 @default.
- W2987723716 hasConcept C2780451532 @default.
- W2987723716 hasConcept C41008148 @default.
- W2987723716 hasConcept C45347329 @default.
- W2987723716 hasConcept C50644808 @default.
- W2987723716 hasConcept C62649853 @default.
- W2987723716 hasConcept C79403827 @default.
- W2987723716 hasConcept C81363708 @default.
- W2987723716 hasConceptScore W2987723716C108583219 @default.
- W2987723716 hasConceptScore W2987723716C127313418 @default.
- W2987723716 hasConceptScore W2987723716C154945302 @default.
- W2987723716 hasConceptScore W2987723716C162324750 @default.
- W2987723716 hasConceptScore W2987723716C187736073 @default.
- W2987723716 hasConceptScore W2987723716C2780451532 @default.
- W2987723716 hasConceptScore W2987723716C41008148 @default.
- W2987723716 hasConceptScore W2987723716C45347329 @default.
- W2987723716 hasConceptScore W2987723716C50644808 @default.
- W2987723716 hasConceptScore W2987723716C62649853 @default.
- W2987723716 hasConceptScore W2987723716C79403827 @default.
- W2987723716 hasConceptScore W2987723716C81363708 @default.
- W2987723716 hasLocation W29877237161 @default.
- W2987723716 hasOpenAccess W2987723716 @default.
- W2987723716 hasPrimaryLocation W29877237161 @default.
- W2987723716 hasRelatedWork W2731899572 @default.
- W2987723716 hasRelatedWork W2999805992 @default.
- W2987723716 hasRelatedWork W3011074480 @default.
- W2987723716 hasRelatedWork W3116150086 @default.
- W2987723716 hasRelatedWork W3133861977 @default.
- W2987723716 hasRelatedWork W3192840557 @default.
- W2987723716 hasRelatedWork W4200173597 @default.
- W2987723716 hasRelatedWork W4291897433 @default.
- W2987723716 hasRelatedWork W4312417841 @default.
- W2987723716 hasRelatedWork W4321369474 @default.
- W2987723716 isParatext "false" @default.
- W2987723716 isRetracted "false" @default.
- W2987723716 magId "2987723716" @default.
- W2987723716 workType "article" @default.