Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988101734> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2988101734 abstract "Abstract Single-cell RNA-sequencing (scRNA-seq) has grown massively in scale since its inception, presenting substantial analytic and computational challenges. Even simple downstream analyses, such as dimensionality reduction and clustering, require days of runtime and hundreds of gigabytes of memory for today’s largest datasets. In addition, current methods often favor common cell types, and miss salient biological features captured by small cell populations. Here we present Hopper, a single-cell toolkit that both speeds up the analysis of single-cell datasets and highlights their transcriptional diversity by intelligent subsampling, or sketching . Hopper realizes the optimal polynomial-time approximation of the Hausdorff distance between the full and downsampled dataset, ensuring that each cell is well-represented by some cell in the sample. Unlike prior sketching methods, Hopper adds points iteratively and allows for additional sampling from regions of interest, enabling fast and targeted multi-resolution analyses. In a dataset of over 1.3 million mouse brain cells, we detect a cluster of just 64 macrophages expressing inflammatory tissues (0.004% of the full dataset) from a Hopper sketch containing just 5,000 cells, and several other small but biologically interesting immune cell populations invisible to analysis of the full data. On an even larger dataset consisting of ~2 million developing mouse organ cells, we show even representation of important cell types in small sketch sizes, in contrast with prior sketching methods. By condensing transcriptional information encoded in large datasets, Hopper grants the individual user with a laptop the same analytic capabilities as large consortium." @default.
- W2988101734 created "2019-11-22" @default.
- W2988101734 creator A5044078921 @default.
- W2988101734 creator A5087020441 @default.
- W2988101734 date "2019-11-08" @default.
- W2988101734 modified "2023-10-01" @default.
- W2988101734 title "Hopper: A Mathematically Optimal Algorithm for Sketching Biological Data" @default.
- W2988101734 cites W1973264045 @default.
- W2988101734 cites W1990313671 @default.
- W2988101734 cites W2045134120 @default.
- W2988101734 cites W2093272411 @default.
- W2988101734 cites W2127605828 @default.
- W2988101734 cites W2135344285 @default.
- W2988101734 cites W2144795336 @default.
- W2988101734 cites W2602744457 @default.
- W2988101734 cites W2735067671 @default.
- W2988101734 cites W2766959028 @default.
- W2988101734 cites W2800392236 @default.
- W2988101734 cites W2901838561 @default.
- W2988101734 cites W2912091260 @default.
- W2988101734 cites W2916020270 @default.
- W2988101734 cites W2950548777 @default.
- W2988101734 doi "https://doi.org/10.1101/835033" @default.
- W2988101734 hasPublicationYear "2019" @default.
- W2988101734 type Work @default.
- W2988101734 sameAs 2988101734 @default.
- W2988101734 citedByCount "1" @default.
- W2988101734 countsByYear W29881017342023 @default.
- W2988101734 crossrefType "posted-content" @default.
- W2988101734 hasAuthorship W2988101734A5044078921 @default.
- W2988101734 hasAuthorship W2988101734A5087020441 @default.
- W2988101734 hasBestOaLocation W29881017341 @default.
- W2988101734 hasConcept C111030470 @default.
- W2988101734 hasConcept C11413529 @default.
- W2988101734 hasConcept C124101348 @default.
- W2988101734 hasConcept C154945302 @default.
- W2988101734 hasConcept C185592680 @default.
- W2988101734 hasConcept C198531522 @default.
- W2988101734 hasConcept C2779231336 @default.
- W2988101734 hasConcept C41008148 @default.
- W2988101734 hasConcept C43617362 @default.
- W2988101734 hasConcept C48044578 @default.
- W2988101734 hasConcept C73555534 @default.
- W2988101734 hasConcept C77088390 @default.
- W2988101734 hasConceptScore W2988101734C111030470 @default.
- W2988101734 hasConceptScore W2988101734C11413529 @default.
- W2988101734 hasConceptScore W2988101734C124101348 @default.
- W2988101734 hasConceptScore W2988101734C154945302 @default.
- W2988101734 hasConceptScore W2988101734C185592680 @default.
- W2988101734 hasConceptScore W2988101734C198531522 @default.
- W2988101734 hasConceptScore W2988101734C2779231336 @default.
- W2988101734 hasConceptScore W2988101734C41008148 @default.
- W2988101734 hasConceptScore W2988101734C43617362 @default.
- W2988101734 hasConceptScore W2988101734C48044578 @default.
- W2988101734 hasConceptScore W2988101734C73555534 @default.
- W2988101734 hasConceptScore W2988101734C77088390 @default.
- W2988101734 hasLocation W29881017341 @default.
- W2988101734 hasLocation W29881017342 @default.
- W2988101734 hasLocation W29881017343 @default.
- W2988101734 hasOpenAccess W2988101734 @default.
- W2988101734 hasPrimaryLocation W29881017341 @default.
- W2988101734 hasRelatedWork W1992487663 @default.
- W2988101734 hasRelatedWork W2129795158 @default.
- W2988101734 hasRelatedWork W2795228480 @default.
- W2988101734 hasRelatedWork W2803292849 @default.
- W2988101734 hasRelatedWork W2903178573 @default.
- W2988101734 hasRelatedWork W2914148645 @default.
- W2988101734 hasRelatedWork W2998938183 @default.
- W2988101734 hasRelatedWork W3001176190 @default.
- W2988101734 hasRelatedWork W3004673798 @default.
- W2988101734 hasRelatedWork W3026020717 @default.
- W2988101734 hasRelatedWork W3035376790 @default.
- W2988101734 hasRelatedWork W3035702662 @default.
- W2988101734 hasRelatedWork W3041220471 @default.
- W2988101734 hasRelatedWork W3103868443 @default.
- W2988101734 hasRelatedWork W3123418868 @default.
- W2988101734 hasRelatedWork W3157183682 @default.
- W2988101734 hasRelatedWork W3175313709 @default.
- W2988101734 hasRelatedWork W3175930909 @default.
- W2988101734 hasRelatedWork W3105283194 @default.
- W2988101734 hasRelatedWork W3111977710 @default.
- W2988101734 isParatext "false" @default.
- W2988101734 isRetracted "false" @default.
- W2988101734 magId "2988101734" @default.
- W2988101734 workType "article" @default.