Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988111337> ?p ?o ?g. }
- W2988111337 endingPage "306" @default.
- W2988111337 startingPage "297" @default.
- W2988111337 abstract "Motor imagery (MI) is an important brain-computer interface (BCI) paradigm, which can be applied without external stimulus. Imagining different joint movements from the same limb allows intuitive control of the outer devices. However, few researches focused on this field, and the decoding accuracy limited the applications for practical use. In this study, we aim to use deep learning methods to explore the ceiling of the decoding performance of three tasks: the resting state, the MI of right hand and right elbow. To represent the brain functional relationships, the correlation matrix that consists of correlation coefficients between electrodes (channels) was calculated as features. We proposed the Channel-Correlation Network to learn the overall representation among channels for classification. Ensemble learning was applied to integrate the output of multiple Channel-Correlation Networks. Our proposed method achieved the decoding accuracy of up to 87.03% in the 3-class scenario. The results demonstrated the effectiveness of deep learning method for decoding MI of different joints from the same limb and the potential of this fine paradigm to be applied in practice." @default.
- W2988111337 created "2019-11-22" @default.
- W2988111337 creator A5003799076 @default.
- W2988111337 creator A5031159788 @default.
- W2988111337 creator A5069531609 @default.
- W2988111337 creator A5072753091 @default.
- W2988111337 creator A5084940574 @default.
- W2988111337 date "2020-01-01" @default.
- W2988111337 modified "2023-10-17" @default.
- W2988111337 title "Deep Channel-Correlation Network for Motor Imagery Decoding From the Same Limb" @default.
- W2988111337 cites W1606399483 @default.
- W2988111337 cites W1947251450 @default.
- W2988111337 cites W1966620545 @default.
- W2988111337 cites W1971140534 @default.
- W2988111337 cites W1974749127 @default.
- W2988111337 cites W1980208701 @default.
- W2988111337 cites W1982802415 @default.
- W2988111337 cites W1986208911 @default.
- W2988111337 cites W2004092686 @default.
- W2988111337 cites W2010456997 @default.
- W2988111337 cites W2089990378 @default.
- W2988111337 cites W2100741386 @default.
- W2988111337 cites W2104640717 @default.
- W2988111337 cites W2106822551 @default.
- W2988111337 cites W2116308679 @default.
- W2988111337 cites W2117251170 @default.
- W2988111337 cites W2119915586 @default.
- W2988111337 cites W2128495200 @default.
- W2988111337 cites W2135802343 @default.
- W2988111337 cites W2140413964 @default.
- W2988111337 cites W2141885969 @default.
- W2988111337 cites W2142280324 @default.
- W2988111337 cites W2146978355 @default.
- W2988111337 cites W2150825261 @default.
- W2988111337 cites W2160498763 @default.
- W2988111337 cites W2169918686 @default.
- W2988111337 cites W2171872429 @default.
- W2988111337 cites W2197723530 @default.
- W2988111337 cites W2507528282 @default.
- W2988111337 cites W2557301950 @default.
- W2988111337 cites W2601067397 @default.
- W2988111337 cites W2604096629 @default.
- W2988111337 cites W2741907166 @default.
- W2988111337 cites W2750484923 @default.
- W2988111337 cites W2754231832 @default.
- W2988111337 cites W2757181078 @default.
- W2988111337 cites W2759483166 @default.
- W2988111337 cites W2769927805 @default.
- W2988111337 cites W2772766867 @default.
- W2988111337 cites W2792724009 @default.
- W2988111337 cites W2887868454 @default.
- W2988111337 cites W2897935534 @default.
- W2988111337 cites W2899435621 @default.
- W2988111337 cites W2919115771 @default.
- W2988111337 cites W2963919481 @default.
- W2988111337 cites W3102455230 @default.
- W2988111337 doi "https://doi.org/10.1109/tnsre.2019.2953121" @default.
- W2988111337 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31725383" @default.
- W2988111337 hasPublicationYear "2020" @default.
- W2988111337 type Work @default.
- W2988111337 sameAs 2988111337 @default.
- W2988111337 citedByCount "35" @default.
- W2988111337 countsByYear W29881113372020 @default.
- W2988111337 countsByYear W29881113372021 @default.
- W2988111337 countsByYear W29881113372022 @default.
- W2988111337 countsByYear W29881113372023 @default.
- W2988111337 crossrefType "journal-article" @default.
- W2988111337 hasAuthorship W2988111337A5003799076 @default.
- W2988111337 hasAuthorship W2988111337A5031159788 @default.
- W2988111337 hasAuthorship W2988111337A5069531609 @default.
- W2988111337 hasAuthorship W2988111337A5072753091 @default.
- W2988111337 hasAuthorship W2988111337A5084940574 @default.
- W2988111337 hasConcept C108583219 @default.
- W2988111337 hasConcept C11413529 @default.
- W2988111337 hasConcept C117220453 @default.
- W2988111337 hasConcept C119857082 @default.
- W2988111337 hasConcept C127162648 @default.
- W2988111337 hasConcept C153180895 @default.
- W2988111337 hasConcept C154945302 @default.
- W2988111337 hasConcept C15744967 @default.
- W2988111337 hasConcept C169760540 @default.
- W2988111337 hasConcept C173201364 @default.
- W2988111337 hasConcept C2524010 @default.
- W2988111337 hasConcept C2780092901 @default.
- W2988111337 hasConcept C31258907 @default.
- W2988111337 hasConcept C33923547 @default.
- W2988111337 hasConcept C41008148 @default.
- W2988111337 hasConcept C522805319 @default.
- W2988111337 hasConcept C54808283 @default.
- W2988111337 hasConcept C57273362 @default.
- W2988111337 hasConceptScore W2988111337C108583219 @default.
- W2988111337 hasConceptScore W2988111337C11413529 @default.
- W2988111337 hasConceptScore W2988111337C117220453 @default.
- W2988111337 hasConceptScore W2988111337C119857082 @default.
- W2988111337 hasConceptScore W2988111337C127162648 @default.
- W2988111337 hasConceptScore W2988111337C153180895 @default.
- W2988111337 hasConceptScore W2988111337C154945302 @default.
- W2988111337 hasConceptScore W2988111337C15744967 @default.