Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988135813> ?p ?o ?g. }
- W2988135813 abstract "An increasing number of biological and clinical evidences have indicated that the microorganisms significantly get involved in the pathological mechanism of extensive varieties of complex human diseases. Inferring potential related microbes for diseases can not only promote disease prevention, diagnosis and treatment, but also provide valuable information for drug development. Considering that experimental methods are expensive and time-consuming, developing computational methods is an alternative choice. However, most of existing methods are biased towards well-characterized diseases and microbes. Furthermore, existing computational methods are limited in predicting potential microbes for new diseases.Here, we developed a novel computational model to predict potential human microbe-disease associations (MDAs) based on Weighted Meta-Graph (WMGHMDA). We first constructed a heterogeneous information network (HIN) by combining the integrated microbe similarity network, the integrated disease similarity network and the known microbe-disease bipartite network. And then, we implemented iteratively pre-designed Weighted Meta-Graph search algorithm on the HIN to uncover possible microbe-disease pairs by cumulating the contribution values of weighted meta-graphs to the pairs as their probability scores. Depending on contribution potential, we described the contribution degree of different types of meta-graphs to a microbe-disease pair with bias rating. Meta-graph with higher bias rating will be assigned greater weight value when calculating probability scores.The experimental results showed that WMGHMDA outperformed some state-of-the-art methods with average AUCs of 0.9288, 0.9068 ±0.0031 in global leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. In the case studies, 9, 19, 37 and 10, 20, 45 out of top-10, 20, 50 candidate microbes were manually verified by previous reports for asthma and inflammatory bowel disease (IBD), respectively. Furthermore, three common human diseases (Crohn's disease, Liver cirrhosis, Type 1 diabetes) were adopted to demonstrate that WMGHMDA could be efficiently applied to make predictions for new diseases. In summary, WMGHMDA has a high potential in predicting microbe-disease associations." @default.
- W2988135813 created "2019-11-22" @default.
- W2988135813 creator A5026469278 @default.
- W2988135813 creator A5066627747 @default.
- W2988135813 date "2019-11-01" @default.
- W2988135813 modified "2023-10-15" @default.
- W2988135813 title "WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network" @default.
- W2988135813 cites W1607743621 @default.
- W2988135813 cites W1970767980 @default.
- W2988135813 cites W1975563293 @default.
- W2988135813 cites W1976526581 @default.
- W2988135813 cites W2004504447 @default.
- W2988135813 cites W2008054523 @default.
- W2988135813 cites W2012606594 @default.
- W2988135813 cites W2016853666 @default.
- W2988135813 cites W2028520715 @default.
- W2988135813 cites W2037279825 @default.
- W2988135813 cites W2057700969 @default.
- W2988135813 cites W2062073449 @default.
- W2988135813 cites W2075363951 @default.
- W2988135813 cites W2088108775 @default.
- W2988135813 cites W2089423792 @default.
- W2988135813 cites W2095389688 @default.
- W2988135813 cites W2097532544 @default.
- W2988135813 cites W2118814218 @default.
- W2988135813 cites W2123688186 @default.
- W2988135813 cites W2124818337 @default.
- W2988135813 cites W2125784987 @default.
- W2988135813 cites W2128769815 @default.
- W2988135813 cites W2131415145 @default.
- W2988135813 cites W2135989088 @default.
- W2988135813 cites W2139119508 @default.
- W2988135813 cites W2141222510 @default.
- W2988135813 cites W2143693563 @default.
- W2988135813 cites W2145336165 @default.
- W2988135813 cites W2148067809 @default.
- W2988135813 cites W2149573313 @default.
- W2988135813 cites W2152970345 @default.
- W2988135813 cites W2158976881 @default.
- W2988135813 cites W2164265873 @default.
- W2988135813 cites W2166562121 @default.
- W2988135813 cites W2183717576 @default.
- W2988135813 cites W2322763599 @default.
- W2988135813 cites W2402184163 @default.
- W2988135813 cites W2460882296 @default.
- W2988135813 cites W2462108616 @default.
- W2988135813 cites W2473876819 @default.
- W2988135813 cites W2512667479 @default.
- W2988135813 cites W2567465856 @default.
- W2988135813 cites W2576112076 @default.
- W2988135813 cites W2583889943 @default.
- W2988135813 cites W2590194234 @default.
- W2988135813 cites W2737240357 @default.
- W2988135813 cites W2739664659 @default.
- W2988135813 cites W2743104969 @default.
- W2988135813 cites W2743159750 @default.
- W2988135813 cites W2748593099 @default.
- W2988135813 cites W2750900465 @default.
- W2988135813 cites W2752131265 @default.
- W2988135813 cites W2756148272 @default.
- W2988135813 cites W2765928324 @default.
- W2988135813 cites W2765950793 @default.
- W2988135813 cites W2767774008 @default.
- W2988135813 cites W2776589520 @default.
- W2988135813 cites W2779938552 @default.
- W2988135813 cites W2789254732 @default.
- W2988135813 cites W2806774580 @default.
- W2988135813 cites W2809363952 @default.
- W2988135813 cites W2888358121 @default.
- W2988135813 cites W2898769300 @default.
- W2988135813 cites W2901312953 @default.
- W2988135813 cites W2963844113 @default.
- W2988135813 cites W935252537 @default.
- W2988135813 cites W2977393556 @default.
- W2988135813 doi "https://doi.org/10.1186/s12859-019-3066-0" @default.
- W2988135813 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6824056" @default.
- W2988135813 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31675979" @default.
- W2988135813 hasPublicationYear "2019" @default.
- W2988135813 type Work @default.
- W2988135813 sameAs 2988135813 @default.
- W2988135813 citedByCount "22" @default.
- W2988135813 countsByYear W29881358132020 @default.
- W2988135813 countsByYear W29881358132021 @default.
- W2988135813 countsByYear W29881358132022 @default.
- W2988135813 countsByYear W29881358132023 @default.
- W2988135813 crossrefType "journal-article" @default.
- W2988135813 hasAuthorship W2988135813A5026469278 @default.
- W2988135813 hasAuthorship W2988135813A5066627747 @default.
- W2988135813 hasBestOaLocation W29881358131 @default.
- W2988135813 hasConcept C103278499 @default.
- W2988135813 hasConcept C115961682 @default.
- W2988135813 hasConcept C124101348 @default.
- W2988135813 hasConcept C126322002 @default.
- W2988135813 hasConcept C132525143 @default.
- W2988135813 hasConcept C142724271 @default.
- W2988135813 hasConcept C154945302 @default.
- W2988135813 hasConcept C197657726 @default.
- W2988135813 hasConcept C27181475 @default.
- W2988135813 hasConcept C2779134260 @default.
- W2988135813 hasConcept C28225019 @default.