Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988255436> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2988255436 abstract "Abstract The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses." @default.
- W2988255436 created "2019-11-22" @default.
- W2988255436 creator A5011780376 @default.
- W2988255436 creator A5042781724 @default.
- W2988255436 creator A5042955162 @default.
- W2988255436 creator A5049996634 @default.
- W2988255436 creator A5050145255 @default.
- W2988255436 date "2019-11-11" @default.
- W2988255436 modified "2023-09-27" @default.
- W2988255436 title "Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms" @default.
- W2988255436 cites W1968376774 @default.
- W2988255436 cites W1988544392 @default.
- W2988255436 cites W2021328460 @default.
- W2988255436 cites W2021637683 @default.
- W2988255436 cites W2044228573 @default.
- W2988255436 cites W2051834497 @default.
- W2988255436 cites W2058044542 @default.
- W2988255436 cites W2061958536 @default.
- W2988255436 cites W2062115009 @default.
- W2988255436 cites W2126658667 @default.
- W2988255436 cites W2260083182 @default.
- W2988255436 cites W2625209857 @default.
- W2988255436 cites W2791341736 @default.
- W2988255436 cites W2792823982 @default.
- W2988255436 cites W2793987160 @default.
- W2988255436 cites W2897882243 @default.
- W2988255436 cites W2900234242 @default.
- W2988255436 cites W2943891315 @default.
- W2988255436 cites W2956062869 @default.
- W2988255436 cites W4241966666 @default.
- W2988255436 cites W4250655317 @default.
- W2988255436 doi "https://doi.org/10.2118/197241-ms" @default.
- W2988255436 hasPublicationYear "2019" @default.
- W2988255436 type Work @default.
- W2988255436 sameAs 2988255436 @default.
- W2988255436 citedByCount "4" @default.
- W2988255436 countsByYear W29882554362021 @default.
- W2988255436 countsByYear W29882554362022 @default.
- W2988255436 countsByYear W29882554362023 @default.
- W2988255436 crossrefType "proceedings-article" @default.
- W2988255436 hasAuthorship W2988255436A5011780376 @default.
- W2988255436 hasAuthorship W2988255436A5042781724 @default.
- W2988255436 hasAuthorship W2988255436A5042955162 @default.
- W2988255436 hasAuthorship W2988255436A5049996634 @default.
- W2988255436 hasAuthorship W2988255436A5050145255 @default.
- W2988255436 hasConcept C105795698 @default.
- W2988255436 hasConcept C11413529 @default.
- W2988255436 hasConcept C117011727 @default.
- W2988255436 hasConcept C119857082 @default.
- W2988255436 hasConcept C127413603 @default.
- W2988255436 hasConcept C139945424 @default.
- W2988255436 hasConcept C154945302 @default.
- W2988255436 hasConcept C173736775 @default.
- W2988255436 hasConcept C175291020 @default.
- W2988255436 hasConcept C199360897 @default.
- W2988255436 hasConcept C25197100 @default.
- W2988255436 hasConcept C2776497017 @default.
- W2988255436 hasConcept C2778382975 @default.
- W2988255436 hasConcept C33923547 @default.
- W2988255436 hasConcept C38652104 @default.
- W2988255436 hasConcept C41008148 @default.
- W2988255436 hasConcept C50644808 @default.
- W2988255436 hasConcept C78519656 @default.
- W2988255436 hasConcept C8880873 @default.
- W2988255436 hasConceptScore W2988255436C105795698 @default.
- W2988255436 hasConceptScore W2988255436C11413529 @default.
- W2988255436 hasConceptScore W2988255436C117011727 @default.
- W2988255436 hasConceptScore W2988255436C119857082 @default.
- W2988255436 hasConceptScore W2988255436C127413603 @default.
- W2988255436 hasConceptScore W2988255436C139945424 @default.
- W2988255436 hasConceptScore W2988255436C154945302 @default.
- W2988255436 hasConceptScore W2988255436C173736775 @default.
- W2988255436 hasConceptScore W2988255436C175291020 @default.
- W2988255436 hasConceptScore W2988255436C199360897 @default.
- W2988255436 hasConceptScore W2988255436C25197100 @default.
- W2988255436 hasConceptScore W2988255436C2776497017 @default.
- W2988255436 hasConceptScore W2988255436C2778382975 @default.
- W2988255436 hasConceptScore W2988255436C33923547 @default.
- W2988255436 hasConceptScore W2988255436C38652104 @default.
- W2988255436 hasConceptScore W2988255436C41008148 @default.
- W2988255436 hasConceptScore W2988255436C50644808 @default.
- W2988255436 hasConceptScore W2988255436C78519656 @default.
- W2988255436 hasConceptScore W2988255436C8880873 @default.
- W2988255436 hasLocation W29882554361 @default.
- W2988255436 hasOpenAccess W2988255436 @default.
- W2988255436 hasPrimaryLocation W29882554361 @default.
- W2988255436 hasRelatedWork W1519910439 @default.
- W2988255436 hasRelatedWork W2010155172 @default.
- W2988255436 hasRelatedWork W2290194015 @default.
- W2988255436 hasRelatedWork W2626098661 @default.
- W2988255436 hasRelatedWork W2999443988 @default.
- W2988255436 hasRelatedWork W3019671359 @default.
- W2988255436 hasRelatedWork W3105203309 @default.
- W2988255436 hasRelatedWork W3154713359 @default.
- W2988255436 hasRelatedWork W4297916299 @default.
- W2988255436 hasRelatedWork W2511989442 @default.
- W2988255436 isParatext "false" @default.
- W2988255436 isRetracted "false" @default.
- W2988255436 magId "2988255436" @default.
- W2988255436 workType "article" @default.