Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988480857> ?p ?o ?g. }
- W2988480857 endingPage "1353" @default.
- W2988480857 startingPage "1335" @default.
- W2988480857 abstract "Since drug-target data have neither class labels nor the cluster number information, they are not suitable for clustering algorithms that require predefined parameters determined by comparing clustering results with real class labels. Density peaks clustering (DPC) is a density-based clustering alg orithm that can determine the number of clusters without requiring class labels. However, the predefined cutoff distance of local density limits its wide application. Therefore, this paper proposes an improved local density method based on a cutoff distance sequence that overcomes the limitations of DPC and can be successful applied to drug-target data. We also introduce multiple-dimensional scaling based on drug and target similarity and perform intuitive graph analysis of the two most significant differentiation features. Drugs of the Enzyme, GPCR, Ion Channel, and Nuclear Receptor 4 standard datasets are identified as 6, 6, 3, and 5 clusters by an improved algorithm, respectively, and similarly, their targets are identified be 5, 5, 8, and 4 clusters. Drug-target data clustering results of the improved algorithm are more reasonable than the results of the fast K-medoids and hierarchical clustering algorithms." @default.
- W2988480857 created "2019-11-22" @default.
- W2988480857 creator A5013664697 @default.
- W2988480857 creator A5028627956 @default.
- W2988480857 creator A5054513626 @default.
- W2988480857 creator A5078221510 @default.
- W2988480857 creator A5079800756 @default.
- W2988480857 date "2019-11-08" @default.
- W2988480857 modified "2023-10-18" @default.
- W2988480857 title "Drug-target interaction data cluster analysis based on improving the density peaks clustering algorithm" @default.
- W2988480857 cites W11193629 @default.
- W2988480857 cites W1841961408 @default.
- W2988480857 cites W1932531222 @default.
- W2988480857 cites W1972098431 @default.
- W2988480857 cites W1979537657 @default.
- W2988480857 cites W1998871699 @default.
- W2988480857 cites W2009313526 @default.
- W2988480857 cites W2017730959 @default.
- W2988480857 cites W2033591223 @default.
- W2988480857 cites W2062941476 @default.
- W2988480857 cites W2083620785 @default.
- W2988480857 cites W2087064593 @default.
- W2988480857 cites W2093313266 @default.
- W2988480857 cites W2108069034 @default.
- W2988480857 cites W2111213181 @default.
- W2988480857 cites W2113054345 @default.
- W2988480857 cites W2115795398 @default.
- W2988480857 cites W2125464731 @default.
- W2988480857 cites W2130473611 @default.
- W2988480857 cites W2144000913 @default.
- W2988480857 cites W2153838454 @default.
- W2988480857 cites W2161607603 @default.
- W2988480857 cites W2165674132 @default.
- W2988480857 cites W2165835468 @default.
- W2988480857 cites W2169658215 @default.
- W2988480857 cites W2221868786 @default.
- W2988480857 cites W2233800101 @default.
- W2988480857 cites W2256553158 @default.
- W2988480857 cites W2259538443 @default.
- W2988480857 cites W2268194897 @default.
- W2988480857 cites W2293435807 @default.
- W2988480857 cites W2295256067 @default.
- W2988480857 cites W2301304385 @default.
- W2988480857 cites W2334037802 @default.
- W2988480857 cites W2524847239 @default.
- W2988480857 cites W2564255290 @default.
- W2988480857 cites W2586696502 @default.
- W2988480857 cites W2597855421 @default.
- W2988480857 cites W2734337707 @default.
- W2988480857 cites W2734794373 @default.
- W2988480857 cites W2747545374 @default.
- W2988480857 cites W2753953057 @default.
- W2988480857 cites W2758138366 @default.
- W2988480857 cites W2789350102 @default.
- W2988480857 cites W2789456849 @default.
- W2988480857 cites W2793947018 @default.
- W2988480857 cites W2804388974 @default.
- W2988480857 cites W2841338726 @default.
- W2988480857 cites W2887102415 @default.
- W2988480857 cites W2889892655 @default.
- W2988480857 cites W2952461389 @default.
- W2988480857 cites W363319864 @default.
- W2988480857 doi "https://doi.org/10.3233/ida-184382" @default.
- W2988480857 hasPublicationYear "2019" @default.
- W2988480857 type Work @default.
- W2988480857 sameAs 2988480857 @default.
- W2988480857 citedByCount "8" @default.
- W2988480857 countsByYear W29884808572020 @default.
- W2988480857 countsByYear W29884808572021 @default.
- W2988480857 countsByYear W29884808572022 @default.
- W2988480857 countsByYear W29884808572023 @default.
- W2988480857 crossrefType "journal-article" @default.
- W2988480857 hasAuthorship W2988480857A5013664697 @default.
- W2988480857 hasAuthorship W2988480857A5028627956 @default.
- W2988480857 hasAuthorship W2988480857A5054513626 @default.
- W2988480857 hasAuthorship W2988480857A5078221510 @default.
- W2988480857 hasAuthorship W2988480857A5079800756 @default.
- W2988480857 hasConcept C103278499 @default.
- W2988480857 hasConcept C109659709 @default.
- W2988480857 hasConcept C11413529 @default.
- W2988480857 hasConcept C115961682 @default.
- W2988480857 hasConcept C121332964 @default.
- W2988480857 hasConcept C124101348 @default.
- W2988480857 hasConcept C153180895 @default.
- W2988480857 hasConcept C154945302 @default.
- W2988480857 hasConcept C164866538 @default.
- W2988480857 hasConcept C199360897 @default.
- W2988480857 hasConcept C22648726 @default.
- W2988480857 hasConcept C2778217198 @default.
- W2988480857 hasConcept C33704608 @default.
- W2988480857 hasConcept C41008148 @default.
- W2988480857 hasConcept C62520636 @default.
- W2988480857 hasConcept C73555534 @default.
- W2988480857 hasConcept C92835128 @default.
- W2988480857 hasConcept C94641424 @default.
- W2988480857 hasConceptScore W2988480857C103278499 @default.
- W2988480857 hasConceptScore W2988480857C109659709 @default.
- W2988480857 hasConceptScore W2988480857C11413529 @default.