Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988486294> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2988486294 endingPage "109498" @default.
- W2988486294 startingPage "109498" @default.
- W2988486294 abstract "Traditional blind restoration model for super-resolution image based on neural network is easy to fall into the problem of local minimum, so a blind restoration model for super-resolution image based on chaotic neural network is constructed. Firstly, the noise of degraded image is removed by using wavelet transform to reduce the influence of the noise of degraded image on the result of blind restoration. Then a simplified chaotic neural network model is constructed by introducing transient chaos and time-varying increment into chaotic neural network. The gray value of image is taken as the input of the network. Two Toeplitz matrices are generated by point spread function and Laplace operator. The connection weights and bias inputs of chaotic neural network are calculated by generating matrix. Iterative degradation of image gray is updated continuously according to the connection weights and bias outputs. Degree value is used to judge whether the allowable error value of network convergence meets the requirement, and when it meets the requirement, the blind restoration of super-resolution image will be output. The experimental results show that the mean values of blind restoration time, image sharpness and energy consumption are 9.273 ms, 99.045% and 118.524 J, respectively. The restoration performance of the model is good, and the blind super-resolution image has the highest similarity with the original image." @default.
- W2988486294 created "2019-11-22" @default.
- W2988486294 creator A5037258424 @default.
- W2988486294 creator A5045481029 @default.
- W2988486294 date "2020-02-01" @default.
- W2988486294 modified "2023-10-13" @default.
- W2988486294 title "Construction of blind restoration model for super-resolution image based on chaotic neural network" @default.
- W2988486294 cites W2302149095 @default.
- W2988486294 cites W2512579588 @default.
- W2988486294 cites W2742894517 @default.
- W2988486294 cites W2800529539 @default.
- W2988486294 doi "https://doi.org/10.1016/j.chaos.2019.109498" @default.
- W2988486294 hasPublicationYear "2020" @default.
- W2988486294 type Work @default.
- W2988486294 sameAs 2988486294 @default.
- W2988486294 citedByCount "6" @default.
- W2988486294 countsByYear W29884862942021 @default.
- W2988486294 countsByYear W29884862942022 @default.
- W2988486294 countsByYear W29884862942023 @default.
- W2988486294 crossrefType "journal-article" @default.
- W2988486294 hasAuthorship W2988486294A5037258424 @default.
- W2988486294 hasAuthorship W2988486294A5045481029 @default.
- W2988486294 hasConcept C106430172 @default.
- W2988486294 hasConcept C11413529 @default.
- W2988486294 hasConcept C115961682 @default.
- W2988486294 hasConcept C153180895 @default.
- W2988486294 hasConcept C154945302 @default.
- W2988486294 hasConcept C2777052490 @default.
- W2988486294 hasConcept C33923547 @default.
- W2988486294 hasConcept C41008148 @default.
- W2988486294 hasConcept C50644808 @default.
- W2988486294 hasConcept C9417928 @default.
- W2988486294 hasConceptScore W2988486294C106430172 @default.
- W2988486294 hasConceptScore W2988486294C11413529 @default.
- W2988486294 hasConceptScore W2988486294C115961682 @default.
- W2988486294 hasConceptScore W2988486294C153180895 @default.
- W2988486294 hasConceptScore W2988486294C154945302 @default.
- W2988486294 hasConceptScore W2988486294C2777052490 @default.
- W2988486294 hasConceptScore W2988486294C33923547 @default.
- W2988486294 hasConceptScore W2988486294C41008148 @default.
- W2988486294 hasConceptScore W2988486294C50644808 @default.
- W2988486294 hasConceptScore W2988486294C9417928 @default.
- W2988486294 hasLocation W29884862941 @default.
- W2988486294 hasOpenAccess W2988486294 @default.
- W2988486294 hasPrimaryLocation W29884862941 @default.
- W2988486294 hasRelatedWork W1533292911 @default.
- W2988486294 hasRelatedWork W1976136352 @default.
- W2988486294 hasRelatedWork W2025477859 @default.
- W2988486294 hasRelatedWork W2130228941 @default.
- W2988486294 hasRelatedWork W2349277163 @default.
- W2988486294 hasRelatedWork W2375489546 @default.
- W2988486294 hasRelatedWork W2384901970 @default.
- W2988486294 hasRelatedWork W2386387936 @default.
- W2988486294 hasRelatedWork W2875263903 @default.
- W2988486294 hasRelatedWork W4210427169 @default.
- W2988486294 hasVolume "131" @default.
- W2988486294 isParatext "false" @default.
- W2988486294 isRetracted "false" @default.
- W2988486294 magId "2988486294" @default.
- W2988486294 workType "article" @default.