Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988489543> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2988489543 abstract "Abstract Near-wall modeling is one of the most challenging aspects of computational fluid dynamic computations. In fact, integration-to-the-wall with low-Reynolds approach strongly affects accuracy of results, but strongly increases the computational resources required by the simulation. A compromise between accuracy and speed to solution is usually obtained through the use of wall functions (WFs), especially in Reynolds averaged Navier–Stokes computations, which normally require that the first cell of the grid to fall inside the log-layer (50 < y+ < 200) (Wilcox, D. C., 1998, Turbulence Modeling for CFD, Vol. 2, DCW Industries, La Cañada, CA). This approach can be generally considered as robust, however the derivation of wall functions from attached flow boundary layers can mislead to nonphysical results in presence of specific flow topologies, e.g., recirculation, or whenever a detailed boundary layer representation is required (e.g., aeroacoustics studies) (Craft, T., Gant, S., Gerasimov, A., Lacovides, H., and Launder, B., 2002, “Wall – Function Strategies for Use in Turbulent Flow CFD,” Proceedings to 12th International Heat Transfer Conference, Grenoble, France, Aug. 18–23). In this work, a preliminary attempt to create an alternative data-driven wall function is performed, exploiting artificial neural networks (ANNs). Whenever enough training examples are provided, ANNs have proven to be extremely powerful in solving complex nonlinear problems (Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y., 2016, Deep Learning, Vol. 1, MIT Press, Cambridge, MA). The learner that is derived from the multilayer perceptron ANN, is here used to obtain two-dimensional, turbulent production and dissipation values near the walls. Training examples of the dataset have been initially collected either from large eddy simulation (LES) simulations of significant 2D test cases or have been found in open databases. Assessments on the morphology and the ANN training can be found in the paper. The ANN has been implemented in a Python environment, using scikit-learn and tensorflow libraries (Scikit-Learn Developers, 2019, “Scikit-learn v0.20.0 User Guide,” Software, Scikit-Learn Developers; Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., 2016, “TensorFlow: A System for Large-Scale Machine Learning,” 12th Symposium on Operating Systems Design and Implementation, Savannah, GA, Nov. 2–4, pp. 265–283). The derived wall function is implemented in openfoam v-17.12 (CFD Direct, 2020, “OpenFoam User Guide v5,” CFD Direct, Caversham, UK), embedding the forwarding algorithm in run-time computations exploiting Python3.6m C_Api library. The data-driven wall function is here applied to k-epsilon simulations of a 2D periodic hill with different computational grids and to a modified compressor cascade NACA aerofoil with sinusoidal leading edge. A comparison between ANN enhanced simulations, available data and standard modelization is here performed and reported." @default.
- W2988489543 created "2019-11-22" @default.
- W2988489543 creator A5021035274 @default.
- W2988489543 creator A5038622768 @default.
- W2988489543 creator A5068598696 @default.
- W2988489543 creator A5072677326 @default.
- W2988489543 date "2020-12-01" @default.
- W2988489543 modified "2023-09-26" @default.
- W2988489543 title "Assessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge" @default.
- W2988489543 cites W1993773795 @default.
- W2988489543 cites W2011070879 @default.
- W2988489543 cites W2406349003 @default.
- W2988489543 cites W2534240011 @default.
- W2988489543 cites W2585298970 @default.
- W2988489543 cites W3105469151 @default.
- W2988489543 doi "https://doi.org/10.1115/1.4048568" @default.
- W2988489543 hasPublicationYear "2020" @default.
- W2988489543 type Work @default.
- W2988489543 sameAs 2988489543 @default.
- W2988489543 citedByCount "2" @default.
- W2988489543 countsByYear W29884895432020 @default.
- W2988489543 countsByYear W29884895432021 @default.
- W2988489543 crossrefType "journal-article" @default.
- W2988489543 hasAuthorship W2988489543A5021035274 @default.
- W2988489543 hasAuthorship W2988489543A5038622768 @default.
- W2988489543 hasAuthorship W2988489543A5068598696 @default.
- W2988489543 hasAuthorship W2988489543A5072677326 @default.
- W2988489543 hasConcept C111603439 @default.
- W2988489543 hasConcept C11413529 @default.
- W2988489543 hasConcept C121332964 @default.
- W2988489543 hasConcept C14036430 @default.
- W2988489543 hasConcept C154945302 @default.
- W2988489543 hasConcept C1633027 @default.
- W2988489543 hasConcept C165231844 @default.
- W2988489543 hasConcept C17744445 @default.
- W2988489543 hasConcept C182748727 @default.
- W2988489543 hasConcept C196558001 @default.
- W2988489543 hasConcept C199539241 @default.
- W2988489543 hasConcept C2776359362 @default.
- W2988489543 hasConcept C38349280 @default.
- W2988489543 hasConcept C41008148 @default.
- W2988489543 hasConcept C45374587 @default.
- W2988489543 hasConcept C50644808 @default.
- W2988489543 hasConcept C57879066 @default.
- W2988489543 hasConcept C60908668 @default.
- W2988489543 hasConcept C78458016 @default.
- W2988489543 hasConcept C86803240 @default.
- W2988489543 hasConcept C94625758 @default.
- W2988489543 hasConceptScore W2988489543C111603439 @default.
- W2988489543 hasConceptScore W2988489543C11413529 @default.
- W2988489543 hasConceptScore W2988489543C121332964 @default.
- W2988489543 hasConceptScore W2988489543C14036430 @default.
- W2988489543 hasConceptScore W2988489543C154945302 @default.
- W2988489543 hasConceptScore W2988489543C1633027 @default.
- W2988489543 hasConceptScore W2988489543C165231844 @default.
- W2988489543 hasConceptScore W2988489543C17744445 @default.
- W2988489543 hasConceptScore W2988489543C182748727 @default.
- W2988489543 hasConceptScore W2988489543C196558001 @default.
- W2988489543 hasConceptScore W2988489543C199539241 @default.
- W2988489543 hasConceptScore W2988489543C2776359362 @default.
- W2988489543 hasConceptScore W2988489543C38349280 @default.
- W2988489543 hasConceptScore W2988489543C41008148 @default.
- W2988489543 hasConceptScore W2988489543C45374587 @default.
- W2988489543 hasConceptScore W2988489543C50644808 @default.
- W2988489543 hasConceptScore W2988489543C57879066 @default.
- W2988489543 hasConceptScore W2988489543C60908668 @default.
- W2988489543 hasConceptScore W2988489543C78458016 @default.
- W2988489543 hasConceptScore W2988489543C86803240 @default.
- W2988489543 hasConceptScore W2988489543C94625758 @default.
- W2988489543 hasLocation W29884895431 @default.
- W2988489543 hasOpenAccess W2988489543 @default.
- W2988489543 hasPrimaryLocation W29884895431 @default.
- W2988489543 hasRelatedWork W10610962 @default.
- W2988489543 hasRelatedWork W10825743 @default.
- W2988489543 hasRelatedWork W11851129 @default.
- W2988489543 hasRelatedWork W2042136 @default.
- W2988489543 hasRelatedWork W2622716 @default.
- W2988489543 hasRelatedWork W4387291 @default.
- W2988489543 hasRelatedWork W4850976 @default.
- W2988489543 hasRelatedWork W7823884 @default.
- W2988489543 hasRelatedWork W7981553 @default.
- W2988489543 hasRelatedWork W9742739 @default.
- W2988489543 isParatext "false" @default.
- W2988489543 isRetracted "false" @default.
- W2988489543 magId "2988489543" @default.
- W2988489543 workType "article" @default.