Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988491440> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2988491440 abstract "Various types of deep learning architecture have been steadily gaining impetus for automatic environmental sound classification. However, the relative paucity of publicly accessible dataset hinders any further improvement in this direction. This work has two principal contributions. First, we put forward a deep learning framework employing convolutional neural network for automatic environmental sound classification. Second, we investigate the possibility of generating synthetic data using data augmentation. We suggest a novel technique for audio data augmentation using a generative adversarial network (GAN). The proposed model along with data augmentation is assessed on the UrbanSound8K dataset. The results authenticate that the suggested method surpasses state-of-the-art methods for data augmentation." @default.
- W2988491440 created "2019-11-22" @default.
- W2988491440 creator A5004278325 @default.
- W2988491440 creator A5027364983 @default.
- W2988491440 date "2019-09-01" @default.
- W2988491440 modified "2023-10-16" @default.
- W2988491440 title "Data Augmentation Using Generative Adversarial Network for Environmental Sound Classification" @default.
- W2988491440 cites W1496704041 @default.
- W2988491440 cites W1972567154 @default.
- W2988491440 cites W1998654670 @default.
- W2988491440 cites W2038484192 @default.
- W2988491440 cites W2039285212 @default.
- W2988491440 cites W2112796928 @default.
- W2988491440 cites W2130640900 @default.
- W2988491440 cites W2140647972 @default.
- W2988491440 cites W2153146266 @default.
- W2988491440 cites W2341412280 @default.
- W2988491440 cites W3098357269 @default.
- W2988491440 doi "https://doi.org/10.23919/eusipco.2019.8902819" @default.
- W2988491440 hasPublicationYear "2019" @default.
- W2988491440 type Work @default.
- W2988491440 sameAs 2988491440 @default.
- W2988491440 citedByCount "17" @default.
- W2988491440 countsByYear W29884914402020 @default.
- W2988491440 countsByYear W29884914402021 @default.
- W2988491440 countsByYear W29884914402022 @default.
- W2988491440 countsByYear W29884914402023 @default.
- W2988491440 crossrefType "proceedings-article" @default.
- W2988491440 hasAuthorship W2988491440A5004278325 @default.
- W2988491440 hasAuthorship W2988491440A5027364983 @default.
- W2988491440 hasConcept C108583219 @default.
- W2988491440 hasConcept C119857082 @default.
- W2988491440 hasConcept C121332964 @default.
- W2988491440 hasConcept C153180895 @default.
- W2988491440 hasConcept C154945302 @default.
- W2988491440 hasConcept C203718221 @default.
- W2988491440 hasConcept C24890656 @default.
- W2988491440 hasConcept C28490314 @default.
- W2988491440 hasConcept C2988773926 @default.
- W2988491440 hasConcept C37736160 @default.
- W2988491440 hasConcept C39890363 @default.
- W2988491440 hasConcept C41008148 @default.
- W2988491440 hasConceptScore W2988491440C108583219 @default.
- W2988491440 hasConceptScore W2988491440C119857082 @default.
- W2988491440 hasConceptScore W2988491440C121332964 @default.
- W2988491440 hasConceptScore W2988491440C153180895 @default.
- W2988491440 hasConceptScore W2988491440C154945302 @default.
- W2988491440 hasConceptScore W2988491440C203718221 @default.
- W2988491440 hasConceptScore W2988491440C24890656 @default.
- W2988491440 hasConceptScore W2988491440C28490314 @default.
- W2988491440 hasConceptScore W2988491440C2988773926 @default.
- W2988491440 hasConceptScore W2988491440C37736160 @default.
- W2988491440 hasConceptScore W2988491440C39890363 @default.
- W2988491440 hasConceptScore W2988491440C41008148 @default.
- W2988491440 hasLocation W29884914401 @default.
- W2988491440 hasOpenAccess W2988491440 @default.
- W2988491440 hasPrimaryLocation W29884914401 @default.
- W2988491440 hasRelatedWork W2901368259 @default.
- W2988491440 hasRelatedWork W2998996837 @default.
- W2988491440 hasRelatedWork W3007138654 @default.
- W2988491440 hasRelatedWork W3023888872 @default.
- W2988491440 hasRelatedWork W3024390022 @default.
- W2988491440 hasRelatedWork W3156291593 @default.
- W2988491440 hasRelatedWork W3164279787 @default.
- W2988491440 hasRelatedWork W4296176982 @default.
- W2988491440 hasRelatedWork W4313479464 @default.
- W2988491440 hasRelatedWork W4316035501 @default.
- W2988491440 isParatext "false" @default.
- W2988491440 isRetracted "false" @default.
- W2988491440 magId "2988491440" @default.
- W2988491440 workType "article" @default.