Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988566211> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2988566211 endingPage "2823" @default.
- W2988566211 startingPage "2813" @default.
- W2988566211 abstract "Bayesian networks are a popular diagnosis method, whose structures are usually defined by human experts and parameters are learned from data. For the increasing complexity of modern systems, building their structures based on physical behaviors is becoming a difficult task. However, the improvement of data collection techniques motivates learning their structures from data, where greedy search is a typical iterative method. In each iteration, it generates multiple structure candidates by modifying one edge, evaluates these structures by scores based on data and selects the best structure for the next iteration. This method is costly because there are too many structures to be evaluated. To solve this problem, we frame the traditional greedy search by Markov decision process and propose an efficient Bayesian network learning approach by integrating reinforcement learning into it. In our approach, a convolutional neural network is employed as the value function to approximate scores. Before evaluating structures using data, the neural network is used to predict scores. Structure candidates with a low predicted score are discarded. By avoiding unnecessary computation, the cooperation of reinforcement learning and greedy search effectively improves the learning efficiency. Two systems, a 10-tank system with 21 monitored variables and the classic Tennessee Eastman process with 52 variables, are employed to demonstrate our approach. The experiment results indicate that the computation cost of our method was reduced by 30%~50%, and the diagnosis accuracy was almost the same." @default.
- W2988566211 created "2019-11-22" @default.
- W2988566211 creator A5011270130 @default.
- W2988566211 creator A5037415977 @default.
- W2988566211 creator A5047419128 @default.
- W2988566211 creator A5061246177 @default.
- W2988566211 date "2020-01-01" @default.
- W2988566211 modified "2023-09-24" @default.
- W2988566211 title "Rapidly Learning Bayesian Networks for Complex System Diagnosis: A Reinforcement Learning Directed Greedy Search Approach" @default.
- W2988566211 cites W1535430927 @default.
- W2988566211 cites W1849277567 @default.
- W2988566211 cites W1968379999 @default.
- W2988566211 cites W1974531744 @default.
- W2988566211 cites W1981696983 @default.
- W2988566211 cites W2014540231 @default.
- W2988566211 cites W2071080293 @default.
- W2988566211 cites W2155653793 @default.
- W2988566211 cites W2155728415 @default.
- W2988566211 cites W2165190832 @default.
- W2988566211 cites W2296746326 @default.
- W2988566211 cites W2334409308 @default.
- W2988566211 cites W2341973567 @default.
- W2988566211 cites W2404692435 @default.
- W2988566211 cites W2494112937 @default.
- W2988566211 cites W2515909245 @default.
- W2988566211 cites W2549473102 @default.
- W2988566211 cites W2581853886 @default.
- W2988566211 cites W2606788990 @default.
- W2988566211 cites W2618530766 @default.
- W2988566211 cites W2734669076 @default.
- W2988566211 cites W2762782113 @default.
- W2988566211 cites W2768753204 @default.
- W2988566211 cites W2789999851 @default.
- W2988566211 cites W2791694051 @default.
- W2988566211 cites W2797960738 @default.
- W2988566211 cites W2906700866 @default.
- W2988566211 cites W3100366369 @default.
- W2988566211 cites W3126123762 @default.
- W2988566211 doi "https://doi.org/10.1109/access.2019.2952143" @default.
- W2988566211 hasPublicationYear "2020" @default.
- W2988566211 type Work @default.
- W2988566211 sameAs 2988566211 @default.
- W2988566211 citedByCount "2" @default.
- W2988566211 countsByYear W29885662112020 @default.
- W2988566211 countsByYear W29885662112022 @default.
- W2988566211 crossrefType "journal-article" @default.
- W2988566211 hasAuthorship W2988566211A5011270130 @default.
- W2988566211 hasAuthorship W2988566211A5037415977 @default.
- W2988566211 hasAuthorship W2988566211A5047419128 @default.
- W2988566211 hasAuthorship W2988566211A5061246177 @default.
- W2988566211 hasBestOaLocation W29885662111 @default.
- W2988566211 hasConcept C107673813 @default.
- W2988566211 hasConcept C11413529 @default.
- W2988566211 hasConcept C119857082 @default.
- W2988566211 hasConcept C154945302 @default.
- W2988566211 hasConcept C33724603 @default.
- W2988566211 hasConcept C41008148 @default.
- W2988566211 hasConcept C51823790 @default.
- W2988566211 hasConcept C97541855 @default.
- W2988566211 hasConceptScore W2988566211C107673813 @default.
- W2988566211 hasConceptScore W2988566211C11413529 @default.
- W2988566211 hasConceptScore W2988566211C119857082 @default.
- W2988566211 hasConceptScore W2988566211C154945302 @default.
- W2988566211 hasConceptScore W2988566211C33724603 @default.
- W2988566211 hasConceptScore W2988566211C41008148 @default.
- W2988566211 hasConceptScore W2988566211C51823790 @default.
- W2988566211 hasConceptScore W2988566211C97541855 @default.
- W2988566211 hasLocation W29885662111 @default.
- W2988566211 hasLocation W29885662112 @default.
- W2988566211 hasOpenAccess W2988566211 @default.
- W2988566211 hasPrimaryLocation W29885662111 @default.
- W2988566211 hasRelatedWork W1599577651 @default.
- W2988566211 hasRelatedWork W2140035747 @default.
- W2988566211 hasRelatedWork W2326372119 @default.
- W2988566211 hasRelatedWork W2511279186 @default.
- W2988566211 hasRelatedWork W2902946190 @default.
- W2988566211 hasRelatedWork W2963058055 @default.
- W2988566211 hasRelatedWork W3022038857 @default.
- W2988566211 hasRelatedWork W3154094704 @default.
- W2988566211 hasRelatedWork W4210723310 @default.
- W2988566211 hasRelatedWork W4319083788 @default.
- W2988566211 hasVolume "8" @default.
- W2988566211 isParatext "false" @default.
- W2988566211 isRetracted "false" @default.
- W2988566211 magId "2988566211" @default.
- W2988566211 workType "article" @default.