Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988598300> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2988598300 abstract "A fundamental concept in algebraic geometry is nonsingularity. In general, it is much easier to work with nonsingular schemes than with singular schemes. A very useful tool is the resolution of singularities, shown by Hironaka [H]: given a variety X over a field of characteristic zero, there is a birational morphism from Y to X, where Y is a nonsingular variety. This morphism is also an isomorphism on the open set of nonsingular points in X. For arbitrary characteristic, we have the result of de Jong [dJ]: given a variety X over a field, there is a proper surjective morphism from Y to X which is generically finite with Y nonsingular. Logarithmic algebraic geometry is another concept which help us deal with some singular varieties. This theory was introduced by Fontaine and Illusie, and mainly developed by Kato [K1, K2, HK, K3, KN, KKN]. On the one hand, logarithmic algebraic geometry includes algebraic geometry in the sense that all scheme is a logarithmic scheme (with trivial logarithmic structure). On the other hand, certain singular schemes can be provided with a suitable logarithmic structure for the purpose of achieving a behaviour similar to those nonsingular schemes. That allows an easier study within the logarithmic context. Toric varieties are an important example in this context [K2]. Besides, logarithmic theory maintains good relationship with de Jong’s theory of alterations. The study of logarithmic singularities in algebraic geometry started by Kato ([K1] and specially [K2]) and described above, although it is very important, it is also incomplete and does not answer many questions that are usually asked. We intend to continue and deepen the study of logarithmic singularities. [H] Hironaka, H. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109-326. [HK] Hyodo, O.; Kato, K. Semi-stable reduction and crystalline cohomology with logarithmic poles. Periodes p-adiques (Bures-sur-Yvette, 1988). Asterisque No. 223 (1994), 221-268. [dJ] de Jong, A.J. Smoothness, semi-stability and alterations. Inst. Hautes Etudes Sci. Publ. Math., 83 (1996), 51-93. [K1] Kato, K. Logarithmic structures of Fontaine-Illusie. Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD (1989), 191-224. [K2] Kato, K. Toric singularities. Amer. J. Math. 116 (1994), no. 5, 1073-1099. [K3] Kato, K. Semi-stable reduction and p-adic etale cohomology. Periodes p-adiques (Bures-sur-Yvette, 1988). Asterisque No. 223 (1994),269-293. [KKN] Kajiwara, T.; Kato, K.; Nakayama, C. Logarithmic abelian varieties, Part IV: Proper models. Nagoya Math. J. 219 (2015), 9-63. [KN] Kato, K.; Nakayama, C. Log Betti cohomology, log etale cohomology, and log de Rham cohomology of log schemes over C. Kodai Math. J. 22 (1999), no. 2, 161-186." @default.
- W2988598300 created "2019-11-22" @default.
- W2988598300 creator A5067556183 @default.
- W2988598300 date "2019-01-01" @default.
- W2988598300 modified "2023-10-16" @default.
- W2988598300 title "Regularity in logarithmic algebraic geometry: a different viewpoint" @default.
- W2988598300 hasPublicationYear "2019" @default.
- W2988598300 type Work @default.
- W2988598300 sameAs 2988598300 @default.
- W2988598300 citedByCount "0" @default.
- W2988598300 crossrefType "journal-article" @default.
- W2988598300 hasAuthorship W2988598300A5067556183 @default.
- W2988598300 hasConcept C105795698 @default.
- W2988598300 hasConcept C10996884 @default.
- W2988598300 hasConcept C119238805 @default.
- W2988598300 hasConcept C12843 @default.
- W2988598300 hasConcept C134306372 @default.
- W2988598300 hasConcept C136119220 @default.
- W2988598300 hasConcept C136197465 @default.
- W2988598300 hasConcept C137212723 @default.
- W2988598300 hasConcept C151730666 @default.
- W2988598300 hasConcept C165761256 @default.
- W2988598300 hasConcept C186219872 @default.
- W2988598300 hasConcept C201482947 @default.
- W2988598300 hasConcept C202444582 @default.
- W2988598300 hasConcept C2731732 @default.
- W2988598300 hasConcept C2779343474 @default.
- W2988598300 hasConcept C2779638872 @default.
- W2988598300 hasConcept C33923547 @default.
- W2988598300 hasConcept C39927690 @default.
- W2988598300 hasConcept C51544822 @default.
- W2988598300 hasConcept C68363185 @default.
- W2988598300 hasConcept C69653121 @default.
- W2988598300 hasConcept C78045399 @default.
- W2988598300 hasConcept C86803240 @default.
- W2988598300 hasConcept C9376300 @default.
- W2988598300 hasConcept C96442724 @default.
- W2988598300 hasConcept C9652623 @default.
- W2988598300 hasConceptScore W2988598300C105795698 @default.
- W2988598300 hasConceptScore W2988598300C10996884 @default.
- W2988598300 hasConceptScore W2988598300C119238805 @default.
- W2988598300 hasConceptScore W2988598300C12843 @default.
- W2988598300 hasConceptScore W2988598300C134306372 @default.
- W2988598300 hasConceptScore W2988598300C136119220 @default.
- W2988598300 hasConceptScore W2988598300C136197465 @default.
- W2988598300 hasConceptScore W2988598300C137212723 @default.
- W2988598300 hasConceptScore W2988598300C151730666 @default.
- W2988598300 hasConceptScore W2988598300C165761256 @default.
- W2988598300 hasConceptScore W2988598300C186219872 @default.
- W2988598300 hasConceptScore W2988598300C201482947 @default.
- W2988598300 hasConceptScore W2988598300C202444582 @default.
- W2988598300 hasConceptScore W2988598300C2731732 @default.
- W2988598300 hasConceptScore W2988598300C2779343474 @default.
- W2988598300 hasConceptScore W2988598300C2779638872 @default.
- W2988598300 hasConceptScore W2988598300C33923547 @default.
- W2988598300 hasConceptScore W2988598300C39927690 @default.
- W2988598300 hasConceptScore W2988598300C51544822 @default.
- W2988598300 hasConceptScore W2988598300C68363185 @default.
- W2988598300 hasConceptScore W2988598300C69653121 @default.
- W2988598300 hasConceptScore W2988598300C78045399 @default.
- W2988598300 hasConceptScore W2988598300C86803240 @default.
- W2988598300 hasConceptScore W2988598300C9376300 @default.
- W2988598300 hasConceptScore W2988598300C96442724 @default.
- W2988598300 hasConceptScore W2988598300C9652623 @default.
- W2988598300 hasLocation W29885983001 @default.
- W2988598300 hasOpenAccess W2988598300 @default.
- W2988598300 hasPrimaryLocation W29885983001 @default.
- W2988598300 hasRelatedWork W1576131748 @default.
- W2988598300 hasRelatedWork W1807785376 @default.
- W2988598300 hasRelatedWork W1835050089 @default.
- W2988598300 hasRelatedWork W2014930334 @default.
- W2988598300 hasRelatedWork W2026156684 @default.
- W2988598300 hasRelatedWork W2030825957 @default.
- W2988598300 hasRelatedWork W2049996134 @default.
- W2988598300 hasRelatedWork W2054067944 @default.
- W2988598300 hasRelatedWork W2070385985 @default.
- W2988598300 hasRelatedWork W2100607385 @default.
- W2988598300 hasRelatedWork W2117931616 @default.
- W2988598300 hasRelatedWork W2127404062 @default.
- W2988598300 hasRelatedWork W2150309900 @default.
- W2988598300 hasRelatedWork W2401523250 @default.
- W2988598300 hasRelatedWork W2558168685 @default.
- W2988598300 hasRelatedWork W3105656507 @default.
- W2988598300 hasRelatedWork W3119690781 @default.
- W2988598300 hasRelatedWork W3154078788 @default.
- W2988598300 hasRelatedWork W3162927288 @default.
- W2988598300 hasRelatedWork W3203816727 @default.
- W2988598300 isParatext "false" @default.
- W2988598300 isRetracted "false" @default.
- W2988598300 magId "2988598300" @default.
- W2988598300 workType "article" @default.