Matches in SemOpenAlex for { <https://semopenalex.org/work/W298872> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W298872 abstract "There has been much recent progress in the study of free boundary problems motivated by phase transformations in materials science. Much of this literature considers fronts propagating in homogeneous media. However, usual materials are heterogeneous due to the presence of defects, grains and precipitates. This thesis addresses the propagation of phase boundaries in heterogeneous media.A particular motivation is a material undergoing martensitic phase transformation. Given a martensitic material with many non-transforming inclusions, there are well established microscopic laws that give the complex evolution of a particular twin or phase boundary as it encounters the many inclusions. The issue of interest is the overall evolution of this interface and the effect of defects and impurities on this evolution. In particular, if the defects are small, it is desirable to find the effective macroscopic law that governs the overall motion, without having to follow all the microscopic details but implicitly taking them into account. Using a theory of phase transformations based on linear elasticity, we show that the normal velocity of the martensitic phase or twin boundary may be written as a sum of several terms: first a homogeneous (but non-local) term that one would obtain for the propagation of the boundary in a homogeneous medium, second a heterogeneous term describing the effects of the inclusions but completely independent of the phase or twin boundary and third an interfacial energy term proportional to the mean curvature of the boundary.As a guide to understanding this problem, we begin with two simplified settings which are also of independent interest. First, we consider the homogenization for the case when the normal velocity depends only on position (the heterogeneous term only). This is equivalent to the homogenization of a Hamilton-Jacobi equation. We establish several variational principles which give useful formulas to characterize the effective Hamiltonian. We illustrate the usefulness of these results through examples and we also provide a qualitative study of the effective normal velocity.Second, we address the case when the interfacial energy is not negligible, so we keep the heterogeneous and curvature terms. This leads to a problem of homogenization of a degenerate parabolic initial value problem. We prove a homogenization theorem and obtain a characterization for the effective normal velocity, which however proves not to be too useful a tool for actual calculations. We therefore study some interesting examples and limiting cases and provide explicit formula in these situations. We also provide some numerical examples.We finally address the problem in full generality in the setting of anti-plane shear. We explicitly evaluate the term induced by the presence of the inclusions and we propose a numerical method that allows us to trace the evolution of the phase boundary. We use this numerical method to evaluate the effect of the inclusions and show that their effect is quite localized. We use it to explain some experimental observations in NiTi." @default.
- W298872 created "2016-06-24" @default.
- W298872 creator A5043687359 @default.
- W298872 date "2002-01-01" @default.
- W298872 modified "2023-10-17" @default.
- W298872 title "Phase Boundary Propagation in Heterogeneous Media" @default.
- W298872 cites W1532111732 @default.
- W298872 cites W1565451952 @default.
- W298872 cites W1991113069 @default.
- W298872 cites W2003166268 @default.
- W298872 cites W2004917780 @default.
- W298872 cites W2021000520 @default.
- W298872 cites W2030119637 @default.
- W298872 cites W2034407904 @default.
- W298872 cites W2036230228 @default.
- W298872 cites W2045225663 @default.
- W298872 cites W2045545335 @default.
- W298872 cites W2053435677 @default.
- W298872 cites W2056568476 @default.
- W298872 cites W2081306902 @default.
- W298872 cites W2090725885 @default.
- W298872 cites W2093711514 @default.
- W298872 cites W2156610674 @default.
- W298872 cites W2407415358 @default.
- W298872 cites W3022122637 @default.
- W298872 cites W1967463968 @default.
- W298872 doi "https://doi.org/10.7907/jxg6-w865." @default.
- W298872 hasPublicationYear "2002" @default.
- W298872 type Work @default.
- W298872 sameAs 298872 @default.
- W298872 citedByCount "1" @default.
- W298872 countsByYear W2988722012 @default.
- W298872 crossrefType "dissertation" @default.
- W298872 hasAuthorship W298872A5043687359 @default.
- W298872 hasConcept C121332964 @default.
- W298872 hasConcept C121864883 @default.
- W298872 hasConcept C134306372 @default.
- W298872 hasConcept C18747287 @default.
- W298872 hasConcept C188324986 @default.
- W298872 hasConcept C191897082 @default.
- W298872 hasConcept C192562407 @default.
- W298872 hasConcept C195065555 @default.
- W298872 hasConcept C2524010 @default.
- W298872 hasConcept C26873012 @default.
- W298872 hasConcept C33923547 @default.
- W298872 hasConcept C44280652 @default.
- W298872 hasConcept C62354387 @default.
- W298872 hasConcept C62520636 @default.
- W298872 hasConcept C66882249 @default.
- W298872 hasConcept C6840138 @default.
- W298872 hasConcept C74650414 @default.
- W298872 hasConcept C87976508 @default.
- W298872 hasConceptScore W298872C121332964 @default.
- W298872 hasConceptScore W298872C121864883 @default.
- W298872 hasConceptScore W298872C134306372 @default.
- W298872 hasConceptScore W298872C18747287 @default.
- W298872 hasConceptScore W298872C188324986 @default.
- W298872 hasConceptScore W298872C191897082 @default.
- W298872 hasConceptScore W298872C192562407 @default.
- W298872 hasConceptScore W298872C195065555 @default.
- W298872 hasConceptScore W298872C2524010 @default.
- W298872 hasConceptScore W298872C26873012 @default.
- W298872 hasConceptScore W298872C33923547 @default.
- W298872 hasConceptScore W298872C44280652 @default.
- W298872 hasConceptScore W298872C62354387 @default.
- W298872 hasConceptScore W298872C62520636 @default.
- W298872 hasConceptScore W298872C66882249 @default.
- W298872 hasConceptScore W298872C6840138 @default.
- W298872 hasConceptScore W298872C74650414 @default.
- W298872 hasConceptScore W298872C87976508 @default.
- W298872 hasLocation W2988721 @default.
- W298872 hasOpenAccess W298872 @default.
- W298872 hasPrimaryLocation W2988721 @default.
- W298872 hasRelatedWork W132835519 @default.
- W298872 hasRelatedWork W1543368489 @default.
- W298872 hasRelatedWork W1640805476 @default.
- W298872 hasRelatedWork W1756239218 @default.
- W298872 hasRelatedWork W1967842292 @default.
- W298872 hasRelatedWork W1972094191 @default.
- W298872 hasRelatedWork W2010319200 @default.
- W298872 hasRelatedWork W201937276 @default.
- W298872 hasRelatedWork W2072754252 @default.
- W298872 hasRelatedWork W2088290080 @default.
- W298872 hasRelatedWork W2129835731 @default.
- W298872 hasRelatedWork W3024155676 @default.
- W298872 hasRelatedWork W3162060294 @default.
- W298872 hasRelatedWork W3162270249 @default.
- W298872 hasRelatedWork W803511921 @default.
- W298872 hasRelatedWork W2131712596 @default.
- W298872 hasRelatedWork W2165716513 @default.
- W298872 hasRelatedWork W2183466769 @default.
- W298872 hasRelatedWork W2187319131 @default.
- W298872 hasRelatedWork W2977554102 @default.
- W298872 isParatext "false" @default.
- W298872 isRetracted "false" @default.
- W298872 magId "298872" @default.
- W298872 workType "dissertation" @default.