Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988788791> ?p ?o ?g. }
- W2988788791 endingPage "1853" @default.
- W2988788791 startingPage "1853" @default.
- W2988788791 abstract "The conversion of plastic waste into fuel by pyrolysis has been recognized as a potential strategy for commercialization. The amount of plastic waste is basically different for each country which normally refers to non-recycled plastics data; consequently, the production target will also be different. This study attempted to build a model to predict fuel production from different non-recycled plastics data. The predictive model was developed via Levenberg-Marquardt approach in feed-forward neural networks model. The optimal number of hidden neurons was selected based on the lowest total of the mean square error. The proposed model was evaluated using the statistical analysis and graphical presentation for its accuracy and reliability. The results showed that the model was capable to predict product yields from pyrolysis of non-recycled plastics with high accuracy and the output values were strongly correlated with the values in literature." @default.
- W2988788791 created "2019-11-22" @default.
- W2988788791 creator A5005228195 @default.
- W2988788791 creator A5005529250 @default.
- W2988788791 creator A5041809828 @default.
- W2988788791 creator A5076203778 @default.
- W2988788791 creator A5076408584 @default.
- W2988788791 date "2019-11-10" @default.
- W2988788791 modified "2023-10-18" @default.
- W2988788791 title "The Yield Prediction of Synthetic Fuel Production from Pyrolysis of Plastic Waste by Levenberg–Marquardt Approach in Feedforward Neural Networks Model" @default.
- W2988788791 cites W1964419775 @default.
- W2988788791 cites W1975023453 @default.
- W2988788791 cites W1977849395 @default.
- W2988788791 cites W1997311940 @default.
- W2988788791 cites W2000800946 @default.
- W2988788791 cites W2004443860 @default.
- W2988788791 cites W2018504448 @default.
- W2988788791 cites W2023585220 @default.
- W2988788791 cites W2026302091 @default.
- W2988788791 cites W2031279073 @default.
- W2988788791 cites W2032813423 @default.
- W2988788791 cites W2034655190 @default.
- W2988788791 cites W2044221647 @default.
- W2988788791 cites W2056879590 @default.
- W2988788791 cites W2057428465 @default.
- W2988788791 cites W2065460153 @default.
- W2988788791 cites W2070464633 @default.
- W2988788791 cites W2070775289 @default.
- W2988788791 cites W2073283770 @default.
- W2988788791 cites W2084798202 @default.
- W2988788791 cites W2093822768 @default.
- W2988788791 cites W2097307505 @default.
- W2988788791 cites W2104789716 @default.
- W2988788791 cites W2121394390 @default.
- W2988788791 cites W2133228591 @default.
- W2988788791 cites W2144066891 @default.
- W2988788791 cites W2256912368 @default.
- W2988788791 cites W2270691435 @default.
- W2988788791 cites W2294827616 @default.
- W2988788791 cites W2473548611 @default.
- W2988788791 cites W2529983883 @default.
- W2988788791 cites W2531414265 @default.
- W2988788791 cites W2561743940 @default.
- W2988788791 cites W2562312418 @default.
- W2988788791 cites W2579986169 @default.
- W2988788791 cites W2587966954 @default.
- W2988788791 cites W2590896313 @default.
- W2988788791 cites W2592270600 @default.
- W2988788791 cites W2620595718 @default.
- W2988788791 cites W2647213446 @default.
- W2988788791 cites W2725405047 @default.
- W2988788791 cites W2768553827 @default.
- W2988788791 cites W2810977803 @default.
- W2988788791 cites W2884222944 @default.
- W2988788791 cites W2897641276 @default.
- W2988788791 cites W2898263852 @default.
- W2988788791 cites W2911976353 @default.
- W2988788791 cites W2913730132 @default.
- W2988788791 cites W2916985134 @default.
- W2988788791 cites W2957408988 @default.
- W2988788791 doi "https://doi.org/10.3390/polym11111853" @default.
- W2988788791 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6918300" @default.
- W2988788791 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31717695" @default.
- W2988788791 hasPublicationYear "2019" @default.
- W2988788791 type Work @default.
- W2988788791 sameAs 2988788791 @default.
- W2988788791 citedByCount "17" @default.
- W2988788791 countsByYear W29887887912020 @default.
- W2988788791 countsByYear W29887887912021 @default.
- W2988788791 countsByYear W29887887912022 @default.
- W2988788791 countsByYear W29887887912023 @default.
- W2988788791 crossrefType "journal-article" @default.
- W2988788791 hasAuthorship W2988788791A5005228195 @default.
- W2988788791 hasAuthorship W2988788791A5005529250 @default.
- W2988788791 hasAuthorship W2988788791A5041809828 @default.
- W2988788791 hasAuthorship W2988788791A5076203778 @default.
- W2988788791 hasAuthorship W2988788791A5076408584 @default.
- W2988788791 hasBestOaLocation W29887887911 @default.
- W2988788791 hasConcept C105795698 @default.
- W2988788791 hasConcept C121332964 @default.
- W2988788791 hasConcept C127413603 @default.
- W2988788791 hasConcept C134121241 @default.
- W2988788791 hasConcept C139719470 @default.
- W2988788791 hasConcept C139945424 @default.
- W2988788791 hasConcept C154945302 @default.
- W2988788791 hasConcept C159985019 @default.
- W2988788791 hasConcept C162324750 @default.
- W2988788791 hasConcept C163258240 @default.
- W2988788791 hasConcept C17744445 @default.
- W2988788791 hasConcept C192562407 @default.
- W2988788791 hasConcept C199539241 @default.
- W2988788791 hasConcept C21880701 @default.
- W2988788791 hasConcept C2778348673 @default.
- W2988788791 hasConcept C2780625559 @default.
- W2988788791 hasConcept C33923547 @default.
- W2988788791 hasConcept C36759035 @default.
- W2988788791 hasConcept C41008148 @default.
- W2988788791 hasConcept C43214815 @default.