Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988891667> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2988891667 abstract "Abstract Light detecting and ranging (LIDAR) full waveform echo detection is increasingly used benefiting from the gallop of high-speed sampling, nevertheless many waveform centroid algorithms are sensitive to noise and require a preset window width at present. We propose an adaptive waveform centroid algorithm for improving the ranging accuracy and robustness of LIDAR in this paper. The algorithm couples the idea of machine learning and the slope selection to get the peak of the fitting curve (PFC). The required waveform data can be adaptively selected by calculating the slope from pulse data, and then its waveform centroid is measured by pulse-based machine learning algorithm using least square method. The simulation and experiments are performed to show the performance of our algorithm compared to the existing algorithms. We demonstrate the proposed algorithm to achieve an average error of 0.0838 ns with a standard deviation of 0.1289 ns at the SNR of 10 dB, which is significantly more accurate and robust when compared with the double-scale waveform centroid algorithm in the simulation. In actual test experiments, our algorithm also complete superior performance. The proposed waveform centroid algorithm has potential for ranging task in LIDAR." @default.
- W2988891667 created "2019-11-22" @default.
- W2988891667 creator A5003913959 @default.
- W2988891667 creator A5009789631 @default.
- W2988891667 creator A5036124105 @default.
- W2988891667 creator A5046881277 @default.
- W2988891667 creator A5061550482 @default.
- W2988891667 creator A5068340254 @default.
- W2988891667 creator A5071773009 @default.
- W2988891667 date "2019-12-01" @default.
- W2988891667 modified "2023-10-16" @default.
- W2988891667 title "Pulse-based machine learning: Adaptive waveform centroid discrimination for LIDAR system" @default.
- W2988891667 cites W1992785809 @default.
- W2988891667 cites W2033716204 @default.
- W2988891667 cites W2062212401 @default.
- W2988891667 cites W2066250437 @default.
- W2988891667 cites W2074378557 @default.
- W2988891667 cites W2091505087 @default.
- W2988891667 cites W2106488983 @default.
- W2988891667 cites W2167465578 @default.
- W2988891667 cites W2267298753 @default.
- W2988891667 cites W2332326047 @default.
- W2988891667 cites W2605169976 @default.
- W2988891667 cites W2900674397 @default.
- W2988891667 doi "https://doi.org/10.1016/j.infrared.2019.103100" @default.
- W2988891667 hasPublicationYear "2019" @default.
- W2988891667 type Work @default.
- W2988891667 sameAs 2988891667 @default.
- W2988891667 citedByCount "2" @default.
- W2988891667 countsByYear W29888916672020 @default.
- W2988891667 countsByYear W29888916672021 @default.
- W2988891667 crossrefType "journal-article" @default.
- W2988891667 hasAuthorship W2988891667A5003913959 @default.
- W2988891667 hasAuthorship W2988891667A5009789631 @default.
- W2988891667 hasAuthorship W2988891667A5036124105 @default.
- W2988891667 hasAuthorship W2988891667A5046881277 @default.
- W2988891667 hasAuthorship W2988891667A5061550482 @default.
- W2988891667 hasAuthorship W2988891667A5068340254 @default.
- W2988891667 hasAuthorship W2988891667A5071773009 @default.
- W2988891667 hasConcept C104317684 @default.
- W2988891667 hasConcept C105795698 @default.
- W2988891667 hasConcept C11413529 @default.
- W2988891667 hasConcept C115051666 @default.
- W2988891667 hasConcept C120665830 @default.
- W2988891667 hasConcept C121332964 @default.
- W2988891667 hasConcept C146599234 @default.
- W2988891667 hasConcept C154945302 @default.
- W2988891667 hasConcept C185592680 @default.
- W2988891667 hasConcept C197424946 @default.
- W2988891667 hasConcept C22679943 @default.
- W2988891667 hasConcept C33923547 @default.
- W2988891667 hasConcept C41008148 @default.
- W2988891667 hasConcept C51399673 @default.
- W2988891667 hasConcept C554190296 @default.
- W2988891667 hasConcept C55493867 @default.
- W2988891667 hasConcept C63479239 @default.
- W2988891667 hasConcept C76155785 @default.
- W2988891667 hasConceptScore W2988891667C104317684 @default.
- W2988891667 hasConceptScore W2988891667C105795698 @default.
- W2988891667 hasConceptScore W2988891667C11413529 @default.
- W2988891667 hasConceptScore W2988891667C115051666 @default.
- W2988891667 hasConceptScore W2988891667C120665830 @default.
- W2988891667 hasConceptScore W2988891667C121332964 @default.
- W2988891667 hasConceptScore W2988891667C146599234 @default.
- W2988891667 hasConceptScore W2988891667C154945302 @default.
- W2988891667 hasConceptScore W2988891667C185592680 @default.
- W2988891667 hasConceptScore W2988891667C197424946 @default.
- W2988891667 hasConceptScore W2988891667C22679943 @default.
- W2988891667 hasConceptScore W2988891667C33923547 @default.
- W2988891667 hasConceptScore W2988891667C41008148 @default.
- W2988891667 hasConceptScore W2988891667C51399673 @default.
- W2988891667 hasConceptScore W2988891667C554190296 @default.
- W2988891667 hasConceptScore W2988891667C55493867 @default.
- W2988891667 hasConceptScore W2988891667C63479239 @default.
- W2988891667 hasConceptScore W2988891667C76155785 @default.
- W2988891667 hasFunder F4320321001 @default.
- W2988891667 hasLocation W29888916671 @default.
- W2988891667 hasOpenAccess W2988891667 @default.
- W2988891667 hasPrimaryLocation W29888916671 @default.
- W2988891667 hasRelatedWork W10116868 @default.
- W2988891667 hasRelatedWork W11882198 @default.
- W2988891667 hasRelatedWork W12219208 @default.
- W2988891667 hasRelatedWork W13151587 @default.
- W2988891667 hasRelatedWork W2093088 @default.
- W2988891667 hasRelatedWork W4572516 @default.
- W2988891667 hasRelatedWork W4983780 @default.
- W2988891667 hasRelatedWork W5708970 @default.
- W2988891667 hasRelatedWork W8337467 @default.
- W2988891667 hasRelatedWork W8705825 @default.
- W2988891667 isParatext "false" @default.
- W2988891667 isRetracted "false" @default.
- W2988891667 magId "2988891667" @default.
- W2988891667 workType "article" @default.