Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988971204> ?p ?o ?g. }
- W2988971204 endingPage "3400" @default.
- W2988971204 startingPage "3394" @default.
- W2988971204 abstract "Chronic recurrent multifocal osteomyelitis (CRMO) in humans can be modeled in Pstpip2cmo mice, which carry a missense mutation in the proline–serine–threonine phosphatase–interacting protein 2 (Pstpip2) gene. As cmo disease in mice, the experimental model analogous to human CRMO, is mediated specifically by IL-1β and not by IL-1α, delineating the molecular pathways contributing to pathogenic IL-1β production is crucial to developing targeted therapies. In particular, our earlier findings support redundant roles of NLR family pyrin domain-containing 3 (NLRP3) and caspase-1 with caspase-8 in instigating cmo. However, the signaling components upstream of caspase-8 and pro-IL-1β cleavage in Pstpip2cmo mice are not well-understood. Therefore, here we investigated the signaling pathways in these mice and discovered a central role of a nonreceptor tyrosine kinase, spleen tyrosine kinase (SYK), in mediating osteomyelitis. Using several mutant mouse strains, immunoblotting, and microcomputed tomography, we demonstrate that absent in melanoma 2 (AIM2), receptor-interacting serine/ threonine protein kinase 3 (RIPK3), and caspase recruitment domain–containing protein 9 (CARD9) are each dispensable for osteomyelitis induction in Pstpip2cmo mice, whereas genetic deletion of Syk completely abrogates the disease phenotype. We further show that SYK centrally mediates signaling upstream of caspase-1 and caspase-8 activation and principally up-regulates NF-κB and IL-1β signaling in Pstpip2cmo mice, thereby inducing cmo. These results provide a rationale for directly targeting SYK and its downstream signaling components in CRMO. Chronic recurrent multifocal osteomyelitis (CRMO) in humans can be modeled in Pstpip2cmo mice, which carry a missense mutation in the proline–serine–threonine phosphatase–interacting protein 2 (Pstpip2) gene. As cmo disease in mice, the experimental model analogous to human CRMO, is mediated specifically by IL-1β and not by IL-1α, delineating the molecular pathways contributing to pathogenic IL-1β production is crucial to developing targeted therapies. In particular, our earlier findings support redundant roles of NLR family pyrin domain-containing 3 (NLRP3) and caspase-1 with caspase-8 in instigating cmo. However, the signaling components upstream of caspase-8 and pro-IL-1β cleavage in Pstpip2cmo mice are not well-understood. Therefore, here we investigated the signaling pathways in these mice and discovered a central role of a nonreceptor tyrosine kinase, spleen tyrosine kinase (SYK), in mediating osteomyelitis. Using several mutant mouse strains, immunoblotting, and microcomputed tomography, we demonstrate that absent in melanoma 2 (AIM2), receptor-interacting serine/ threonine protein kinase 3 (RIPK3), and caspase recruitment domain–containing protein 9 (CARD9) are each dispensable for osteomyelitis induction in Pstpip2cmo mice, whereas genetic deletion of Syk completely abrogates the disease phenotype. We further show that SYK centrally mediates signaling upstream of caspase-1 and caspase-8 activation and principally up-regulates NF-κB and IL-1β signaling in Pstpip2cmo mice, thereby inducing cmo. These results provide a rationale for directly targeting SYK and its downstream signaling components in CRMO. Autoinflammatory bone diseases, including chronic recurrent multifocal osteomyelitis (CRMO), 3The abbreviations used are: CRMOchronic recurrent multifocal osteomyelitisSYKspleen tyrosine kinaseASCapoptosis-associated speck-like protein containing a caspase activation and recruitment domainCTcomputed tomographyLPSlipopolysaccharideBMDMbone marrow-derived macrophageMAPmitogen-activated proteinJNKc-Jun N-terminal kinaseERKextracellular signal-regulated kinaseGSDMDgasdermin D. osteoporosis, Paget's disease, arthritis, and periodontal disease, are increasingly pervasive contributors to severe chronic pain, physical disabilities, and morbidity (1Crowson C.S. Matteson E.L. Myasoedova E. Michet C.J. Ernste F.C. Warrington K.J. Davis 3rd, J.M. Hunder G.G. Therneau T.M. Gabriel S.E. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases.Arthritis Rheum. 2011; 63 (21360492): 633-63910.1002/art.30155Crossref PubMed Scopus (282) Google Scholar). CRMO is primarily a pediatric chronic inflammatory bone disease, with at least 80% of patients experiencing primary symptoms, including osteomyelitis and debilitating bone pain (2Jurik A.G. Chronic recurrent multifocal osteomyelitis.Semin. Musculoskelet. Radiol. 2004; 8 (15478027): 243-25310.1055/s-2004-835364Crossref PubMed Scopus (109) Google Scholar). Treatment of CRMO is currently limited to nonsteroidal anti-inflammatory drugs with escalation to corticosteroids or bisphosphonates for pain relief (3Hofmann S.R. Kapplusch F. Girschick H.J. Morbach H. Pablik J. Ferguson P.J. Hedrich C.M. Chronic recurrent multifocal osteomyelitis (CRMO): presentation, pathogenesis, and treatment.Curr. Osteoporos. Rep. 2017; 15 (29080202): 542-55410.1007/s11914-017-0405-9Crossref PubMed Scopus (68) Google Scholar). However, all current therapeutic options have limited specificity to the pathophysiology underlying CRMO. chronic recurrent multifocal osteomyelitis spleen tyrosine kinase apoptosis-associated speck-like protein containing a caspase activation and recruitment domain computed tomography lipopolysaccharide bone marrow-derived macrophage mitogen-activated protein c-Jun N-terminal kinase extracellular signal-regulated kinase gasdermin D. To study the molecular mechanisms underpinning disease manifestation, CRMO in humans can be modeled in mice that carry the L98P missense mutation in the Pstpip2 gene. Proline–serine–threonine phosphatase–interacting protein 2 (PSTPIP2), a Fes/CIP4 homology domain and Bin-Amphiphysin-Rvs (F-BAR) family protein involved in regulating membrane and cytoskeletal dynamics (4Roberts-Galbraith R.H. Gould K.L. Setting the F-BAR: functions and regulation of the F-BAR protein family.Cell Cycle. 2010; 9 (20948299): 4091-409710.4161/cc.9.20.13587Crossref PubMed Scopus (62) Google Scholar), is encoded by Pstpip2 on chromosome 18 in both humans and mice and is predominantly expressed in the myeloid lineage (5Stern S.M. Ferguson P.J. Autoinflammatory bone diseases.Rheum. Dis. Clin. North Am. 2013; 39 (24182852): 735-74910.1016/j.rdc.2013.05.002Abstract Full Text Full Text PDF PubMed Scopus (77) Google Scholar). The L98P mutation in mice is termed chronic multifocal osteomyelitis (cmo), and Pstpip2cmo mice are phenotypically characterized by autoinflammatory disease involving the bones and skin, resulting in osteomyelitis and bone deformities. The bone lesions in both cmo disease and CRMO are associated with increased IL-1 signaling, osteoclast-mediated resorption, and an elevation of osteoclast precursors (6Chitu V. Nacu V. Charles J.F. Henne W.M. McMahon H.T. Nandi S. Ketchum H. Harris R. Nakamura M.C. Stanley E.R. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts.Blood. 2012; 120 (22923495): 3126-313510.1182/blood-2012-04-425595Crossref PubMed Scopus (54) Google Scholar), but the specific inflammatory pathways critical for disease are not known. IL-1β has been established as the principle driver of dysregulated cellular homeostasis, extracellular matrix composition, proinflammatory cytokine production, and osteolysis in a diverse array of autoinflammatory, hematologic, and bone diseases, including osteoarthritis (7Daheshia M. Yao J.Q. The interleukin 1β pathway in the pathogenesis of osteoarthritis.J. Rheumatol. 2008; 35 (18925684): 2306-231210.3899/jrheum.080346Crossref PubMed Scopus (281) Google Scholar) and multiple myeloma (8Li Y. Li N. Yan Z. Li H. Chen L. Zhang Z. Fan G. Xu K. Li Z. Dysregulation of the NLRP3 inflammasome complex and related cytokines in patients with multiple myeloma.Hematology. 2016; 21 (26146985): 144-15110.1179/1607845415Y.0000000029Crossref PubMed Scopus (10) Google Scholar). Inhibition of IL-1β and IL-1 receptor (IL-1R) signaling has been shown to completely protect against disease in Pstpip2cmo mice (9Lukens J.R. Gross J.M. Calabrese C. Iwakura Y. Lamkanfi M. Vogel P. Kanneganti T.D. Critical role for inflammasome-independent IL-1β production in osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24395792): 1066-107110.1073/pnas.1318688111Crossref PubMed Scopus (77) Google Scholar), suggesting that inhibition of IL-1β, IL-1R, or their upstream regulators could provide significant benefit to patients with autoinflammatory bone disease. It is known that caspase-1–mediated cleavage of pro-IL-1β is activated by the nucleotide-binding oligomerization domain–like receptor family, pyrin domain–containing 3 (NLRP3) inflammasome (10Karki R. Kanneganti T.D. Diverging inflammasome signals in tumorigenesis and potential targeting.Nat. Rev. Cancer. 2019; 19 (30842595): 197-214Crossref PubMed Scopus (144) Google Scholar), and previous studies have established a redundant role of caspase-1 or NLRP3 with caspase-8 in mediating this cleavage and disease progression (11Lukens J.R. Gurung P. Vogel P. Johnson G.R. Carter R.A. McGoldrick D.J. Bandi S.R. Calabrese C.R. Vande Walle L. Lamkanfi M. Kanneganti T.D. Dietary modulation of the microbiome affects autoinflammatory disease.Nature. 2014; 516 (25274309): 246-24910.1038/nature13788Crossref PubMed Scopus (170) Google Scholar, 12Gurung P. Burton A. Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27071119): 4452-445710.1073/pnas.1601636113Crossref PubMed Scopus (56) Google Scholar). However, the signaling cascade involved in caspase-8 activation remains not well-understood. The nonreceptor tyrosine kinase SYK is a central regulatory molecule in innate immune Toll-like receptor and nucleotide-binding oligomerization domain–like receptor signaling pathways (13Lin Y.C. Huang D.Y. Chu C.L. Lin W.W. Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of Toll-like receptors-mediated JNK signaling pathway.Mol. Immunol. 2010; 47 (20138367): 1569-157810.1016/j.molimm.2010.01.008Crossref PubMed Scopus (54) Google Scholar, 14Lin Y.C. Huang D.Y. Chu C.L. Lin Y.L. Lin W.W. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3.Sci. Signal. 2013; 6 (23962979): ra71Crossref PubMed Scopus (65) Google Scholar) and inflammatory cytokine secretion (15Hara H. Tsuchiya K. Kawamura I. Fang R. Hernandez-Cuellar E. Shen Y. Mizuguchi J. Schweighoffer E. Tybulewicz V. Mitsuyama M. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity.Nat. Immunol. 2013; 14 (24185614): 1247-125510.1038/ni.2749Crossref PubMed Scopus (228) Google Scholar). SYK is also known to play a role in activating caspase-8, resulting in IL-1β processing (16Gringhuis S.I. Kaptein T.M. Wevers B.A. Theelen B. van der Vlist M. Boekhout T. Geijtenbeek T.B. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome.Nat. Immunol. 2012; 13 (22267217): 246-25410.1038/ni.2222Crossref PubMed Scopus (365) Google Scholar). Based on the involvement of SYK in the caspase-8 pathway and the importance of caspase-8 in mediating cmo disease, we sought to determine the role of SYK signaling in regulating cmo disease. Here we discovered the mechanistic basis underpinning SYK-dependent induction of autoinflammatory osteomyelitis. Specifically, we show that SYK critically up-regulates the pro-IL-1β production responsible for cmo disease progression and proinflammatory NF-κB signaling, which contributes to pro-IL-1β up-regulation. The NLRP3 inflammasome plays a redundant role with caspase-8 to promote disease progression in Pstpip2cmo mice, indicating that NLRP3 is an upstream regulator of caspase-1 activation (12Gurung P. Burton A. Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27071119): 4452-445710.1073/pnas.1601636113Crossref PubMed Scopus (56) Google Scholar), but our understanding of the upstream regulation of caspase-8 activation remains incomplete. Although caspase-8 deficiency is embryonically lethal, caspase-8–deficient mice can be completely rescued by deleting receptor-interacting serine/threonine kinase 3 (RIPK3) (17Gurung P. Kanneganti T.D. Novel roles for caspase-8 in IL-1β and inflammasome regulation.Am. J. Pathol. 2015; 185 (25451151): 17-2510.1016/j.ajpath.2014.08.025Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, 18Oberst A. Dillon C.P. Weinlich R. McCormick L.L. Fitzgerald P. Pop C. Hakem R. Salvesen G.S. Green D.R. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis.Nature. 2011; 471 (21368763): 363-36710.1038/nature09852Crossref PubMed Scopus (819) Google Scholar, 19Kaiser W.J. Upton J.W. Long A.B. Livingston-Rosanoff D. Daley-Bauer L.P. Hakem R. Caspary T. Mocarski E.S. RIP3 mediates the embryonic lethality of caspase-8-deficient mice.Nature. 2011; 471 (21368762): 368-37210.1038/nature09857Crossref PubMed Scopus (690) Google Scholar). In addition, reduced IL-1β production and abolished caspase-8 activation in Ripk3−/− bone marrow–derived dendritic cells suggest that RIPK3 is required for caspase-8 activation and subsequent release of IL-1β (20Moriwaki K. Bertin J. Gough P.J. Chan F.K. A RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing.J. Immunol. 2015; 194 (25567679): 1938-194410.4049/jimmunol.1402167Crossref PubMed Scopus (111) Google Scholar). Absent in melanoma 2 (AIM2) acts as an inflammasome sensor for cytosolic DNA, and it activates caspase-1 through the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC). AIM2 induces caspase-8 activation in caspase-1–deficient macrophages in the context of several bacterial infections, including Burkholderia (21Bast A. Krause K. Schmidt I.H. Pudla M. Brakopp S. Hopf V. Breitbach K. Steinmetz I. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.PLoS Pathog. 2014; 10 (24626296): e100398610.1371/journal.ppat.1003986Crossref PubMed Scopus (43) Google Scholar), Francisella (22Pierini R. Juruj C. Perret M. Jones C.L. Mangeot P. Weiss D.S. Henry T. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages.Cell Death Differ. 2012; 19 (22555457): 1709-172110.1038/cdd.2012.51Crossref PubMed Scopus (141) Google Scholar), and Legionella (23Mascarenhas D.P.A. Cerqueira D.M. Pereira M.S.F. Castanheira F.V.S. Fernandes T.D. Manin G.Z. Cunha L.D. Zamboni D.S. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome.PLoS Pathog. 2017; 13 (28771586): e100650210.1371/journal.ppat.1006502Crossref PubMed Scopus (75) Google Scholar). Given their established functions in caspase-8 activation under various conditions, we explored the roles of RIPK3 and AIM2 in mediating caspase-8 activation in Pstpip2cmo mice by analyzing cmo disease progression in NLRP3- and RIPK3-deficient Pstpip2cmo mice (Pstpip2cmoNlrp3−/−Ripk3−/−) and NLRP3- and AIM2-deficient Pstpip2cmo mice (Pstpip2cmoNlrp3−/−Aim2−/−). All mice with both genotypes (Pstpip2cmoNlrp3−/−Ripk3−/− and Pstpip2cmoNlrp3−/−Aim2−/−) developed disease similarly to Pstpip2cmo mice (Fig. 1, A and B). Microcomputed tomography (micro-CT) scans of the inflamed areas revealed an extensive reduction in bone density and structural malformation in the feet of these mice (Fig. 1, A and B). Further, massive lymphomegaly was observed in the popliteal lymph nodes draining inflamed footpads (Fig. 1, A and B). These data suggest that RIPK3 and AIM2 are dispensable for disease progression in Pstpip2cmo mice. In addition to the role of SYK in innate immune signaling pathways (13Lin Y.C. Huang D.Y. Chu C.L. Lin W.W. Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of Toll-like receptors-mediated JNK signaling pathway.Mol. Immunol. 2010; 47 (20138367): 1569-157810.1016/j.molimm.2010.01.008Crossref PubMed Scopus (54) Google Scholar, 14Lin Y.C. Huang D.Y. Chu C.L. Lin Y.L. Lin W.W. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3.Sci. Signal. 2013; 6 (23962979): ra71Crossref PubMed Scopus (65) Google Scholar) and inflammatory cytokine secretion (15Hara H. Tsuchiya K. Kawamura I. Fang R. Hernandez-Cuellar E. Shen Y. Mizuguchi J. Schweighoffer E. Tybulewicz V. Mitsuyama M. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity.Nat. Immunol. 2013; 14 (24185614): 1247-125510.1038/ni.2749Crossref PubMed Scopus (228) Google Scholar), recent evidence has indicated the involvement of SYK in a diverse range of biological functions, including cellular adhesion, platelet activation, and osteoclast maturation (24Mócsai A. Humphrey M.B. Van Ziffle J.A. Hu Y. Burghardt A. Spusta S.C. Majumdar S. Lanier L.L. Lowell C.A. Nakamura M.C. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase.Proc. Natl. Acad. Sci. U.S.A. 2004; 101 (15073337): 6158-616310.1073/pnas.0401602101Crossref PubMed Scopus (377) Google Scholar). The SYK adaptor protein caspase recruitment domain–containing protein 9 (CARD9) is expressed primarily in lymphoid tissues and contributes to innate immune signaling in response to fungal, viral, and bacterial infections (25Malik A. Sharma D. Malireddi R.K.S. Guy C.S. Chang T.C. Olsen S.R. Neale G. Vogel P. Kanneganti T.D. SYK-CARD9 Signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer.Immunity. 2018; 49 (30231985): 515-530.e510.1016/j.immuni.2018.08.024Abstract Full Text Full Text PDF PubMed Scopus (59) Google Scholar, 26Wagener M. Hoving J.C. Ndlovu H. Marakalala M.J. Dectin-1-Syk-CARD9 signaling pathway in TB immunity.Front. Immunol. 2018; 9 (29487599): 22510.3389/fimmu.2018.00225Crossref PubMed Scopus (34) Google Scholar, 27Mócsai A. Ruland J. Tybulewicz V.L. The SYK tyrosine kinase: a crucial player in diverse biological functions.Nat. Rev. Immunol. 2010; 10 (20467426): 387-40210.1038/nri2765Crossref PubMed Scopus (765) Google Scholar). Given that SYK and CARD9 are involved in caspase-8 activation and subsequent IL-1β processing in bone marrow–derived dendritic cells during fungal infection (16Gringhuis S.I. Kaptein T.M. Wevers B.A. Theelen B. van der Vlist M. Boekhout T. Geijtenbeek T.B. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome.Nat. Immunol. 2012; 13 (22267217): 246-25410.1038/ni.2222Crossref PubMed Scopus (365) Google Scholar), we explored the respective contributions of SYK and CARD9 to disease progression in Pstpip2cmo mice. First, we monitored disease progression in Pstpip2cmoNlrp3−/−Sykfl/flLysMcre mice and Pstpip2cmoNlrp3−/−Card9−/− mice. Although Pstpip2cmoNlrp3−/− Card9−/− mice did not show protection from disease, Pstpip2cmoNlrp3−/−Sykfl/flLysMcre mice displayed nearly complete protection (Fig. 2, A and B). Next we investigated whether deletion of SYK in Pstpip2cmo mice with intact NLRP3 would be sufficient to provide protection from disease. We found that myeloid-specific deletion of SYK alone in Pstpip2cmo mice (Pstpip2cmoSykfl/flLysMcre) provided complete protection from disease (Fig. 2C). The structural bone lesions found by micro-CT and the popliteal lymphomegaly observed in Pstpip2cmo, Pstpip2cmoNlrp3−/−, and Pstpip2cmoNlrp3−/−Card9−/− mice were rescued in Pstpip2cmoNlrp3−/−Sykfl/flLysMcre and Pstpip2cmo Sykfl/flLysMcre mice (Fig. 2, A–C). Taken together, these data suggest that SYK functions upstream of both caspase-1 and caspase-8 in inducing cmo disease, that SYK is sufficient and necessary for cmo disease induction, and that NLRP3 and CARD9 are dispensable for cmo disease progression. Disease in cmo mice is mediated by the cytokine IL-1β (9Lukens J.R. Gross J.M. Calabrese C. Iwakura Y. Lamkanfi M. Vogel P. Kanneganti T.D. Critical role for inflammasome-independent IL-1β production in osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24395792): 1066-107110.1073/pnas.1318688111Crossref PubMed Scopus (77) Google Scholar). To investigate the role of SYK in regulating IL-1β up-regulation in cmo, we first measured pro-IL-1β expression and SYK activation in the footpads of WT and Pstpip2cmo mice. Footpads from Pstpip2cmo mice had increased pro-IL-1β expression and SYK activation with respect to those of WT mice (Fig. 3A). Myeloid-specific deletion of SYK in Pstpip2cmo mice reduced the expression of pro-IL-1β in footpads to a level similar to that of WT mice without affecting the expression of caspase-1 or caspase-8 (Fig. 3A). Consistent with these data, the expression of pro-IL-1β induced by lipopolysaccharide (LPS) treatment was increased in bone marrow-derived macrophages (BMDMs) isolated from Pstpip2cmo mice relative to that of BMDMs from WT mice (Fig. 3B). The increased pro-IL-1β expression in Pstpip2cmo mice correlated with activation of SYK. Myeloid-specific deletion of SYK in Pstpip2cmo mice abolished the increased induction of pro-IL-1β in BMDMs upon LPS stimulation relative to Pstpip2cmo BMDMs without affecting the expression of caspase-1 and caspase-8 (Fig. 3B). These findings suggest a primary role for SYK in mediating pro-IL-1β production and cmo disease progression. We next sought to identify additional intracellular signaling pathways mediated by SYK signaling that contribute to induction of pro-IL-1β expression and excessive inflammation in Pstpip2cmo mice. Recent evidence has demonstrated that the mitogen-activated protein (MAP) kinases ASK1 and ASK2 centrally regulate NF-κB and downstream MAP kinases, including JNK, ERK, and p38, to drive autoinflammatory disease progression in the Ptpn6spin mouse model of neutrophilic dermatosis (28Tartey S. Gurung P. Dasari T.K. Burton A. Kanneganti T.D. ASK1/2 signaling promotes inflammation in a mouse model of neutrophilic dermatosis.J. Clin. Invest. 2018; 128 (29629899): 2042-204710.1172/JCI98446Crossref PubMed Scopus (19) Google Scholar). We hypothesized that NF-κB and MAP kinase signaling promote cmo disease progression and that SYK plays a role in regulating this signaling. Although there was more activation of NF-κB and ERK in the footpads of Pstpip2cmo mice compared with WT mice, JNK and p38 were activated similarly (Fig. 3C). However, deletion of SYK reversed the elevated NF-κB but not ERK activation in Pstpip2cmo mice, suggesting that NF-κB plays an important role downstream of SYK to mediate persistent inflammation in cmo disease. Furthermore, SYK has been shown to regulate inflammasome activation and IL-1β maturation downstream of dectin-1 signaling (16Gringhuis S.I. Kaptein T.M. Wevers B.A. Theelen B. van der Vlist M. Boekhout T. Geijtenbeek T.B. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome.Nat. Immunol. 2012; 13 (22267217): 246-25410.1038/ni.2222Crossref PubMed Scopus (365) Google Scholar). We therefore asked whether SYK regulates both NLRP3 inflammasome and caspase-8 activation upstream of IL-1β production. We observed similar caspase-1 and caspase-8 cleavage in BMDMs derived from WT, Pstpip2cmo, and Pstpip2cmoSykfl/flLysMcre mice in response to the classical NLRP3 inflammasome trigger LPS + ATP, which was further supported by the similar gasdermin D (GSDMD) activation observed among these genotypes (Fig. 3D). In addition, we further noticed that SYK deficiency did not affect the expression of pro-IL-1β, NLRP3, and ASC, all of which are crucial components of inflammasome signaling (Fig. 3E). These data suggest that SYK does not regulate the caspase-1 and caspase-8 activation mediated by the classical NLRP3 trigger. Overall, our data indicate that SYK regulates NF-κB signaling, but not inflammasome activation, for the induction of pro-IL-1β to mediate disease progression in Pstpip2cmo mice. Cmo has been shown to be mediated by pathological IL-1β production downstream of NLRP3/caspase-1 and caspase-8 (9Lukens J.R. Gross J.M. Calabrese C. Iwakura Y. Lamkanfi M. Vogel P. Kanneganti T.D. Critical role for inflammasome-independent IL-1β production in osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24395792): 1066-107110.1073/pnas.1318688111Crossref PubMed Scopus (77) Google Scholar, 11Lukens J.R. Gurung P. Vogel P. Johnson G.R. Carter R.A. McGoldrick D.J. Bandi S.R. Calabrese C.R. Vande Walle L. Lamkanfi M. Kanneganti T.D. Dietary modulation of the microbiome affects autoinflammatory disease.Nature. 2014; 516 (25274309): 246-24910.1038/nature13788Crossref PubMed Scopus (170) Google Scholar, 12Gurung P. Burton A. Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27071119): 4452-445710.1073/pnas.1601636113Crossref PubMed Scopus (56) Google Scholar). Disease progression occurs despite single deficiency of either caspase-1 or caspase-8 (12Gurung P. Burton A. Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27071119): 4452-445710.1073/pnas.1601636113Crossref PubMed Scopus (56) Google Scholar), which suggests that the caspases function as part of distinct complexes that are independently activated. Although caspase-1 and caspase-8 have both been shown to colocalize with AIM2/ASC speck to mediate pro-IL-1β cleavage (22Pierini R. Juruj C. Perret M. Jones C.L. Mangeot P. Weiss D.S. Henry T. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages.Cell Death Differ. 2012; 19 (22555457): 1709-172110.1038/cdd.2012.51Crossref PubMed Scopus (141) Google Scholar), AIM2 deficiency did not provide protection in Pstpip2cmo mice, further supporting that, in cmo disease, caspase-1 and caspase-8 operate and are activated independently in distinct complexes. In this study, we demonstrated that deficiency of SYK in Pstpip2cmo mice prevented the induction of osteomyelitis. SYK signaling upstream of caspase-1 and caspase-8 to promote pro-IL-1β production centrally mediates cmo disease induction. Thus, it is interesting that deficiency of the SYK adaptor protein CARD9 did not provide protection in Pstpip2cmo mice. In addition to promoting pro-IL-1β synthesis, SYK, but not CARD9, has been shown to regulate NLRP3 inflammasome activation during fungal infection (29Gross O. Poeck H. Bscheider M. Dostert C. Hannesschläger N. Endres S. Hartmann G. Tardivel A. Schweighoffer E. Tybulewicz V. Mocsai A. Tschopp J. Ruland J. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence.Nature. 2009; 459 (19339971): 433-43610.1038/nature07965Crossref PubMed Scopus (656) Google Scholar). This suggests that the CARD9 pathway selectively transduces SYK signaling to promote pro-IL-1β synthesis but not inflammasome activation. Additionally, several reports have highlighted the role of SYK in regulation of the NLRP3- and caspase-8-mediated inflammasomes (16Gringhuis S.I. Kaptein T.M. Wevers B.A. Theelen B. van der Vlist M. Boekhout T. Geijtenbeek T.B. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome.Nat. Immunol. 2012; 13 (22267217): 246-25410.1038/ni.2222Crossref PubMed Scopus (365) Google Scholar, 29Gross O. Poeck H. Bscheider M. Dostert C. Hannesschläger N. Endres S. Hartmann G. Tardivel A. Schweighoffer E. Tybulewicz V. Mocsai A. Tschopp J. Ruland J. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence.Nature. 2009; 459 (19339971): 433-43610.1038/nature07965Crossref PubMed Scopus (656) Google Scholar, 30Lin Y.C. Huang D.Y. Wang J.S. Lin Y.L. Hsieh S.L. Huang K.C. Lin W.W. Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization.J. Leukoc. Biol. 2015; 97 (25605870): 825-83510.1189/jlb.3HI0814-371RRCrossref PubMed Scopus (76) Google Scholar). However, our data with the canonical NLRP3 trigger LPS + ATP did not reveal a dependence of caspase-1 and caspase-8 processing on SYK, suggesting an exclusively diverse but specific role for SYK in mediating cmo disease. In this regard, SYK primarily acts as a pivotal regulator of pro-IL-1β synthesis but not as a regulator of inflammasome activation; however, these two processes both converge toward the production of active IL-1β. Recent evidence has also established central roles for the NLRP3 inflammasome and IL-1β signaling in several additional related disorders of nonbacterial osteomyelitis, including Majeed syndrome; synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome; and deficiency of IL-1R antagonist (3Hofmann S.R. Kapplusch F. Girschick H.J. Morbach H. Pablik J. Ferguson P.J. Hedrich C.M. Chronic recurrent multifocal osteomyelitis (CRMO): presentation, pathogenesis, and treatment.Curr. Osteoporos. Rep. 2017; 15 (29080202): 542-55410.1007/s11914-017-0405-9Crossref PubMed Scopus (68) Google Scholar, 9Lukens J.R. Gross J.M. Calabrese C. Iwakura Y. Lamkanfi M. Vogel P. Kanneganti T.D. Critical role for inflammasome-independent IL-1β production in osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24395792): 1066-107110.1073/pnas.1318688111Crossref PubMed Scopus (77) Google Scholar, 12Gurung P. Burton A. Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27071119): 4452-445710.1073/pnas.1601636113Crossref PubMed Scopus (56) Google Scholar). Our findings provide an important context for evaluating the role of SYK in mediating these related autoinflammatory bone disorders and for the therapeutic potential of SYK inhibitors in this disease spectrum. The central regulatory role of SYK is not confined to IL-1β–mediated autoinflammatory disease. We have reported previously that SYK licenses MyD88 to induce IL-1α–mediated inflammatory disease in Ptpn6spin mice (31Gurung P. Fan G. Lukens J.R. Vogel P. Tonks N.K. Kanneganti T.D. Tyrosine kinase SYK licenses MyD88 adaptor protein to instigate IL-1α-mediated inflammatory disease.Immunity. 2017; 46 (28410990): 635-64810.1016/j.immuni.2017.03.014Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar). Similarly, we observed increased activation of SYK in the absence of PSTPIP2, suggesting that PSTPIP2 functions to suppress SYK signaling. However, the regulatory mechanisms behind SYK activation by PSTPIP2 require further investigation. Recent evidence has established that PSTPIP2 interacts with SHIP1, which is encoded by Ptpn6 (32Drobek A. Kralova J. Skopcova T. Kucova M. Novák P. Angelisová P. Otahal P. Alberich-Jorda M. Brdicka T. PSTPIP2, a protein associated with autoinflammatory disease, interacts with inhibitory enzymes SHIP1 and Csk.J. Immunol. 2015; 195 (26304991): 3416-342610.4049/jimmunol.1401494Crossref PubMed Scopus (18) Google Scholar), suggesting that SHIP1 may be able to modulate SYK activation through its phosphatase activity. SYK signaling is known to be activated downstream of various cell surface receptors, including CD74, integrins, C-type lectin receptors (dectin-1 and dectin-2), and Fc receptors (27Mócsai A. Ruland J. Tybulewicz V.L. The SYK tyrosine kinase: a crucial player in diverse biological functions.Nat. Rev. Immunol. 2010; 10 (20467426): 387-40210.1038/nri2765Crossref PubMed Scopus (765) Google Scholar). Identification of the specific triggers of SYK activation in these Pstpip2cmo mice would further clarify the signaling mechanism and provide a deeper understanding of the progression of cmo disease. SYK signaling has also been strongly associated with the recruitment of neutrophils to areas of inflammation (33Van Ziffle J.A. Lowell C.A. Neutrophil-specific deletion of Syk kinase results in reduced host defense to bacterial infection.Blood. 2009; 114 (19797524): 4871-488210.1182/blood-2009-05-220806Crossref PubMed Scopus (86) Google Scholar). The marked reductions in inflammation and lymphomegaly seen in SYK-deficient Pstpip2cmo mice indicate that SYK signaling potentially mediates neutrophil recruitment in Pstpip2cmo mice. Although T cell dysregulation has been associated with inflammatory bone diseases, previous studies have characterized the osteomyelitis in cmo disease by increased neutrophil numbers without T cell abnormalities (9Lukens J.R. Gross J.M. Calabrese C. Iwakura Y. Lamkanfi M. Vogel P. Kanneganti T.D. Critical role for inflammasome-independent IL-1β production in osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24395792): 1066-107110.1073/pnas.1318688111Crossref PubMed Scopus (77) Google Scholar, 34Grosse J. Chitu V. Marquardt A. Hanke P. Schmittwolf C. Zeitlmann L. Schropp P. Barth B. Yu P. Paffenholz R. Stumm G. Nehls M. Stanley E.R. Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease.Blood. 2006; 107 (16397132): 3350-335810.1182/blood-2005-09-3556Crossref PubMed Scopus (114) Google Scholar). As neutrophils have been implicated as major contributors to IL-1β production in cmo (11Lukens J.R. Gurung P. Vogel P. Johnson G.R. Carter R.A. McGoldrick D.J. Bandi S.R. Calabrese C.R. Vande Walle L. Lamkanfi M. Kanneganti T.D. Dietary modulation of the microbiome affects autoinflammatory disease.Nature. 2014; 516 (25274309): 246-24910.1038/nature13788Crossref PubMed Scopus (170) Google Scholar), our findings suggest that SYK-mediated recruitment and activation of neutrophils may also play a role in promoting the boney inflammation characterizing Pstpip2cmo mice. Previous studies have shown that inhibition of signaling pathways highly associated with caspase-8 activation and inflammatory bone disease, such as tumor necrosis factor signaling, fails to protect against cmo disease (9Lukens J.R. Gross J.M. Calabrese C. Iwakura Y. Lamkanfi M. Vogel P. Kanneganti T.D. Critical role for inflammasome-independent IL-1β production in osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24395792): 1066-107110.1073/pnas.1318688111Crossref PubMed Scopus (77) Google Scholar, 12Gurung P. Burton A. Kanneganti T.D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27071119): 4452-445710.1073/pnas.1601636113Crossref PubMed Scopus (56) Google Scholar). This also indicates that current guidelines for the therapeutic use of tumor necrosis factor inhibitors in the subset of patients with CRMO and concurrent autoimmune diseases may not be effective in treating CRMO. Therapeutic options for the largely pediatric and adolescent CRMO population are limited by nonspecificity and inadequate control of pain and disease progression, which can result in physical disabilities or permanent deformities. As genetic deletion of Syk in the myeloid compartment of Pstpip2cmo mice resulted in complete prevention of disease induction and progression, SYK and its downstream signaling components represent promising novel therapeutic targets in CRMO. Pstpip2cmo (35Chitu V. Ferguson P.J. de Bruijn R. Schlueter A.J. Ochoa L.A. Waldschmidt T.J. Yeung Y.G. Stanley E.R. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice.Blood. 2009; 114 (19608749): 2497-250510.1182/blood-2009-02-204925Crossref PubMed Scopus (54) Google Scholar), Nlrp3−/− (36Karki R. Man S.M. Malireddi R.K.S. Gurung P. Vogel P. Lamkanfi M. Kanneganti T.D. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection.Cell Host Microbe. 2015; 17 (25704009): 357-36810.1016/j.chom.2015.01.006Abstract Full Text Full Text PDF PubMed Scopus (163) Google Scholar), Ripk3−/− (37Newton K. Sun X. Dixit V.M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4.Mol. Cell Biol. 2004; 24 (14749364): 1464-146910.1128/MCB.24.4.1464-1469.2004Crossref PubMed Scopus (376) Google Scholar), Aim2−/− (38Karki R. Lee E. Place D. Samir P. Mavuluri J. Sharma B.R. Balakrishnan A. Malireddi R.K.S. Geiger R. Zhu Q. Neale G. Kanneganti T.D. IRF8 regulates transcription of NAIPS for NLRC4 inflammasome activation.Cell. 2018; 173 (29576451): 920-933 e91310.1016/j.cell.2018.02.055Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar), Card9−/− (39Gross O. Gewies A. Finger K. Schäfer M. Sparwasser T. Peschel C. Förster I. Ruland J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity.Nature. 2006; 442 (16862125): 651-65610.1038/nature04926Crossref PubMed Scopus (631) Google Scholar), and Sykfl/flLysMcre (25Malik A. Sharma D. Malireddi R.K.S. Guy C.S. Chang T.C. Olsen S.R. Neale G. Vogel P. Kanneganti T.D. SYK-CARD9 Signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer.Immunity. 2018; 49 (30231985): 515-530.e510.1016/j.immuni.2018.08.024Abstract Full Text Full Text PDF PubMed Scopus (59) Google Scholar) mice have been described previously. Pstpip2cmoNlrp3−/− mice were generated by crossing Pstpip2cmo and Nlrp3−/− mice. Then Pstpip2cmoNlrp3−/− Ripk3−/−, Pstpip2cmoNlrp3−/−Aim2−/−, Pstpip2cmoNlrp3−/− Card9−/−, and Pstpip2cmoNlrp3−/−Sykfl/flLysMcre mice were generated by crossing Pstpip2cmoNlrp3−/− mice onto Ripk3−/−, Aim2−/−, Card9−/−, and Sykfl/flLysMcre backgrounds, respectively. Pstpip2cmoSykfl/flLysMcre mice were generated by crossing Pstpip2cmo and Sykfl/flLysMcre mice. Pstpip2cmo mice were purchased from The Jackson Laboratory and were on the BALB/c background. All other mutant mice were on the C57BL/6 background. Littermate controls were utilized to evaluate the influence of genetic deletions on immune responses, IL-1β regulation, and cmo disease progression. All mice were kept in the Animal Resource Center at St. Jude Children's Research Hospital. Animal studies were conducted according to protocols approved by the St. Jude Animal Care and Use Committee. Primary BMDMs were grown for 5 to 6 days in Iscove's modified Dulbecco's medium (Gibco) supplemented with 10% FBS (Atlanta Biologicals), 30% L929-conditioned medium, 1% nonessential amino acids (Gibco), and 1% penicillin/streptomycin (Sigma). BMDMs were seeded at a concentration of 1 × 106 cells onto 12-well plates. After incubating overnight, cells were stimulated with LPS (100 ng/ml, InvivoGen) for the indicated time (0–8 h) or treated with LPS + ATP (LPS, 4 h; ATP (5 mm, Roche), 30 min) (38Karki R. Lee E. Place D. Samir P. Mavuluri J. Sharma B.R. Balakrishnan A. Malireddi R.K.S. Geiger R. Zhu Q. Neale G. Kanneganti T.D. IRF8 regulates transcription of NAIPS for NLRC4 inflammasome activation.Cell. 2018; 173 (29576451): 920-933 e91310.1016/j.cell.2018.02.055Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar) before cell harvest. For immunoblotting, BMDMs and footpad protein lysates were prepared by tissue homogenization in radioimmune precipitation assay lysis buffer supplemented with a protease inhibitor mixture (Roche) and PhosSTOP (Roche). A Pierce BCA protein assay kit was used to quantify samples. A total of 40 μg of protein was resolved using SDS-PAGE and transferred onto PVDF membranes (40Sharma B.R. Karki R. Lee E. Zhu Q. Gurung P. Kanneganti T.D. Innate immune adaptor MyD88 deficiency prevents skin inflammation in SHARPIN-deficient mice.Cell Death Differ. 2019; 26 (30038386): 741-75010.1038/s41418-018-0159-7Crossref PubMed Scopus (24) Google Scholar). The membranes were blocked in 5% skim milk before primary antibodies were added and incubated overnight at 4 °C. Afterward, membranes were incubated with HRP-tagged secondary antibodies for 1 h at room temperature. Primary antibodies were anti-GAPDH (Cell Signaling Technology, catalog no. 5174), anti-IL-1β (Cell Signaling Technology, catalog no. 12507), anti-phospho-ERK1/2 (Cell Signaling Technology, catalog no. 9101), anti-total ERK1/2 (Cell Signaling Technology, catalog no. 9102), anti-phospho-p38 (Cell Signaling Technology, catalog no. 9211), anti-total p38 (Cell Signaling Technology, catalog no. 9212), anti-phospho-IκBα (Cell Signaling Technology, catalog no. 2859), anti-total IκBα (Cell Signaling Technology, catalog no. 9242), anti-phospho-SYK (Cell Signaling Technology, catalog no. 2717), anti-total SYK (Cell Signaling Technology, catalog no. 2712), anti-phospho-JNK (Cell Signaling Technology, catalog no. 9251), anti-total JNK (Cell Signaling Technology, catalog no. 9252), anti-caspase-1 (Adipogen, catalog no. AG-20B-0044-C100), anti-ASC (Adipogen, catalog no. AG-25B-0006-C100), anti-NLRP3 (Adipogen, catalog no. AG-20B-0014-C100), anti-gasdermin D (Abcam, catalog no. Ab155233), and anti-caspase-8 (Adipogen, catalog no. AG-20T-0138-C100). Secondary HRP antibodies were purchased from Jackson ImmunoResearch Laboratories. A Siemens Inveon μCT scanner (Siemens Healthcare) was used to capture micro-CT images. Mouse footpads were imaged with a 672 × 1344 mm matrix and a field of view of 30.04 × 60.08 mm with one bed position. Projections were obtained at 80 peak kilovoltage and 500 μA (1050-ms exposure, 1000-ms settle time) over half rotation (440 projections), giving an isotropic resolution of 44.7 μm. Inveon Research Workplace software was used to process the data. Each experiment was repeated at least twice before inclusion in the manuscript. The log-rank (Mantel–Cox) test was used to compare statistical significance between survival curves in the two groups. T. K. D., R. G., R. K., B. B., B. R. S., P. G., and A. B. data curation; T. K. D., R. G., R. K., B. B., B. R. S., P. G., and A. B. formal analysis; T. K. D., R. G., R. K., B. B., B. R. S., P. G., and A. B. investigation; T. K. D. and R. K. writing-original draft; T. K. D., R. G., R. K., B. B., B. R. S., P. G., A. B., and T.-D. K. writing-review and editing; R. K. and T.-D. K. supervision; T.-D. K. conceptualization; T.-D. K. funding acquisition. We thank Nicole Lantz for help with animal husbandry and Rebecca Tweedell, Ph.D., for scientific editing and writing support. We also extend thanks to Dr. Jieun Kim in the St. Jude Small Animal Imaging Center for help with acquiring and analyzing the micro-CT data." @default.
- W2988971204 created "2019-11-22" @default.
- W2988971204 creator A5022524605 @default.
- W2988971204 creator A5027823484 @default.
- W2988971204 creator A5047291224 @default.
- W2988971204 creator A5053275196 @default.
- W2988971204 creator A5055989517 @default.
- W2988971204 creator A5065657128 @default.
- W2988971204 creator A5070195220 @default.
- W2988971204 creator A5074251335 @default.
- W2988971204 date "2020-03-01" @default.
- W2988971204 modified "2023-10-14" @default.
- W2988971204 title "The nonreceptor tyrosine kinase SYK drives caspase-8/NLRP3 inflammasome-mediated autoinflammatory osteomyelitis" @default.
- W2988971204 cites W1812780023 @default.
- W2988971204 cites W1900409754 @default.
- W2988971204 cites W1937837640 @default.
- W2988971204 cites W1974412717 @default.
- W2988971204 cites W1975593978 @default.
- W2988971204 cites W1976143672 @default.
- W2988971204 cites W1979945691 @default.
- W2988971204 cites W1984991776 @default.
- W2988971204 cites W1991689544 @default.
- W2988971204 cites W1993162037 @default.
- W2988971204 cites W1996338676 @default.
- W2988971204 cites W1997966580 @default.
- W2988971204 cites W2007111969 @default.
- W2988971204 cites W2011473183 @default.
- W2988971204 cites W2013277175 @default.
- W2988971204 cites W2015602908 @default.
- W2988971204 cites W2017341404 @default.
- W2988971204 cites W2025001196 @default.
- W2988971204 cites W2025355874 @default.
- W2988971204 cites W2029649819 @default.
- W2988971204 cites W2036734620 @default.
- W2988971204 cites W2042577315 @default.
- W2988971204 cites W2077217909 @default.
- W2988971204 cites W2078760583 @default.
- W2988971204 cites W2082681418 @default.
- W2988971204 cites W2083392874 @default.
- W2988971204 cites W2130776456 @default.
- W2988971204 cites W2141564385 @default.
- W2988971204 cites W2163857997 @default.
- W2988971204 cites W2314044888 @default.
- W2988971204 cites W2314543619 @default.
- W2988971204 cites W2606704799 @default.
- W2988971204 cites W2743111855 @default.
- W2988971204 cites W2765501886 @default.
- W2988971204 cites W2792195687 @default.
- W2988971204 cites W2793680980 @default.
- W2988971204 cites W2795727387 @default.
- W2988971204 cites W2884487141 @default.
- W2988971204 cites W2890491535 @default.
- W2988971204 cites W2918426281 @default.
- W2988971204 doi "https://doi.org/10.1074/jbc.ra119.010623" @default.
- W2988971204 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7076204" @default.
- W2988971204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31719149" @default.
- W2988971204 hasPublicationYear "2020" @default.
- W2988971204 type Work @default.
- W2988971204 sameAs 2988971204 @default.
- W2988971204 citedByCount "12" @default.
- W2988971204 countsByYear W29889712042020 @default.
- W2988971204 countsByYear W29889712042021 @default.
- W2988971204 countsByYear W29889712042022 @default.
- W2988971204 countsByYear W29889712042023 @default.
- W2988971204 crossrefType "journal-article" @default.
- W2988971204 hasAuthorship W2988971204A5022524605 @default.
- W2988971204 hasAuthorship W2988971204A5027823484 @default.
- W2988971204 hasAuthorship W2988971204A5047291224 @default.
- W2988971204 hasAuthorship W2988971204A5053275196 @default.
- W2988971204 hasAuthorship W2988971204A5055989517 @default.
- W2988971204 hasAuthorship W2988971204A5065657128 @default.
- W2988971204 hasAuthorship W2988971204A5070195220 @default.
- W2988971204 hasAuthorship W2988971204A5074251335 @default.
- W2988971204 hasBestOaLocation W29889712041 @default.
- W2988971204 hasConcept C139174496 @default.
- W2988971204 hasConcept C139964883 @default.
- W2988971204 hasConcept C170493617 @default.
- W2988971204 hasConcept C184235292 @default.
- W2988971204 hasConcept C185592680 @default.
- W2988971204 hasConcept C190283241 @default.
- W2988971204 hasConcept C203014093 @default.
- W2988971204 hasConcept C2777209026 @default.
- W2988971204 hasConcept C2780551157 @default.
- W2988971204 hasConcept C31573885 @default.
- W2988971204 hasConcept C35174551 @default.
- W2988971204 hasConcept C42362537 @default.
- W2988971204 hasConcept C48297814 @default.
- W2988971204 hasConcept C502942594 @default.
- W2988971204 hasConcept C55493867 @default.
- W2988971204 hasConcept C62478195 @default.
- W2988971204 hasConcept C71924100 @default.
- W2988971204 hasConcept C86803240 @default.
- W2988971204 hasConcept C90059517 @default.
- W2988971204 hasConcept C95444343 @default.
- W2988971204 hasConcept C98424977 @default.
- W2988971204 hasConceptScore W2988971204C139174496 @default.
- W2988971204 hasConceptScore W2988971204C139964883 @default.
- W2988971204 hasConceptScore W2988971204C170493617 @default.