Matches in SemOpenAlex for { <https://semopenalex.org/work/W2988971513> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2988971513 abstract "For decades, the Predicted Mean Vote (PMV) model has been adopted to evaluate building occupants' thermal comfort. However, recent studies argue that the PMV model is inaccurate and suffers from two major issues: thermal comfort parameter inadequacy and modeling data inadequacy. To overcome these issues, in this paper, we propose a learning-based approach for thermal comfort modeling, named as Heterogeneous Transfer Learning (HTL) based Intelligent Thermal Comfort Neural Network (HTL-ITCNN). First, to address the parameter inadequacy issue, we add more relevant factors as the modeling features except for the six PMV parameters. Due to the flexibility of learning-based approaches, newly found thermal comfort parameters can be appended to extend the number of modeling features. Second, to mitigate the impact of the data inadequacy issue, we adopt the deep transfer learning techniques to train the thermal comfort model, where the model training would benefit from the transferred knowledge from the existing datasets. Due to the heterogeneity of the features among different datasets, we follow the HTL concept to conducting effective knowledge transfer among heterogeneous domains, which are the different but related datasets with varied features. To validate our solution, we conduct five-month data collection experiments and build our datasets. With the HTL-based two-stage learning paradigm, the experimental results show that the accuracy of HTL-ITCNN outperforms the PMV model by on average 73.9%. Besides, we verify the impacts of newly added features and knowledge transfer on model performance. Moreover, we demonstrate the enormous potential of personal thermal comfort modeling research." @default.
- W2988971513 created "2019-11-22" @default.
- W2988971513 creator A5022795764 @default.
- W2988971513 creator A5029282636 @default.
- W2988971513 creator A5039158745 @default.
- W2988971513 creator A5089642905 @default.
- W2988971513 date "2019-11-13" @default.
- W2988971513 modified "2023-10-18" @default.
- W2988971513 title "Heterogeneous Transfer Learning for Thermal Comfort Modeling" @default.
- W2988971513 cites W1986184982 @default.
- W2988971513 cites W1989793851 @default.
- W2988971513 cites W2090859261 @default.
- W2988971513 cites W2144015513 @default.
- W2988971513 cites W2586127761 @default.
- W2988971513 cites W2592124941 @default.
- W2988971513 cites W2601071020 @default.
- W2988971513 cites W2610291107 @default.
- W2988971513 cites W2796665034 @default.
- W2988971513 cites W2809095263 @default.
- W2988971513 cites W2892262816 @default.
- W2988971513 cites W2901394106 @default.
- W2988971513 cites W602438514 @default.
- W2988971513 doi "https://doi.org/10.1145/3360322.3360843" @default.
- W2988971513 hasPublicationYear "2019" @default.
- W2988971513 type Work @default.
- W2988971513 sameAs 2988971513 @default.
- W2988971513 citedByCount "14" @default.
- W2988971513 countsByYear W29889715132020 @default.
- W2988971513 countsByYear W29889715132021 @default.
- W2988971513 countsByYear W29889715132022 @default.
- W2988971513 countsByYear W29889715132023 @default.
- W2988971513 crossrefType "proceedings-article" @default.
- W2988971513 hasAuthorship W2988971513A5022795764 @default.
- W2988971513 hasAuthorship W2988971513A5029282636 @default.
- W2988971513 hasAuthorship W2988971513A5039158745 @default.
- W2988971513 hasAuthorship W2988971513A5089642905 @default.
- W2988971513 hasConcept C105795698 @default.
- W2988971513 hasConcept C108583219 @default.
- W2988971513 hasConcept C119857082 @default.
- W2988971513 hasConcept C121332964 @default.
- W2988971513 hasConcept C133913538 @default.
- W2988971513 hasConcept C150899416 @default.
- W2988971513 hasConcept C154945302 @default.
- W2988971513 hasConcept C2776960227 @default.
- W2988971513 hasConcept C2780598303 @default.
- W2988971513 hasConcept C33923547 @default.
- W2988971513 hasConcept C41008148 @default.
- W2988971513 hasConcept C50644808 @default.
- W2988971513 hasConcept C56739046 @default.
- W2988971513 hasConcept C67186912 @default.
- W2988971513 hasConcept C77088390 @default.
- W2988971513 hasConcept C97355855 @default.
- W2988971513 hasConceptScore W2988971513C105795698 @default.
- W2988971513 hasConceptScore W2988971513C108583219 @default.
- W2988971513 hasConceptScore W2988971513C119857082 @default.
- W2988971513 hasConceptScore W2988971513C121332964 @default.
- W2988971513 hasConceptScore W2988971513C133913538 @default.
- W2988971513 hasConceptScore W2988971513C150899416 @default.
- W2988971513 hasConceptScore W2988971513C154945302 @default.
- W2988971513 hasConceptScore W2988971513C2776960227 @default.
- W2988971513 hasConceptScore W2988971513C2780598303 @default.
- W2988971513 hasConceptScore W2988971513C33923547 @default.
- W2988971513 hasConceptScore W2988971513C41008148 @default.
- W2988971513 hasConceptScore W2988971513C50644808 @default.
- W2988971513 hasConceptScore W2988971513C56739046 @default.
- W2988971513 hasConceptScore W2988971513C67186912 @default.
- W2988971513 hasConceptScore W2988971513C77088390 @default.
- W2988971513 hasConceptScore W2988971513C97355855 @default.
- W2988971513 hasLocation W29889715131 @default.
- W2988971513 hasOpenAccess W2988971513 @default.
- W2988971513 hasPrimaryLocation W29889715131 @default.
- W2988971513 hasRelatedWork W2889705046 @default.
- W2988971513 hasRelatedWork W2946016983 @default.
- W2988971513 hasRelatedWork W2960456850 @default.
- W2988971513 hasRelatedWork W3192840557 @default.
- W2988971513 hasRelatedWork W4223943233 @default.
- W2988971513 hasRelatedWork W4312200629 @default.
- W2988971513 hasRelatedWork W4317565044 @default.
- W2988971513 hasRelatedWork W4360585206 @default.
- W2988971513 hasRelatedWork W4380075502 @default.
- W2988971513 hasRelatedWork W4382286161 @default.
- W2988971513 isParatext "false" @default.
- W2988971513 isRetracted "false" @default.
- W2988971513 magId "2988971513" @default.
- W2988971513 workType "article" @default.