Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989002859> ?p ?o ?g. }
- W2989002859 endingPage "109979" @default.
- W2989002859 startingPage "109979" @default.
- W2989002859 abstract "There is growing interest to use supercritical carbon dioxide (sCO2) as a working fluid in thermal management applications. This study investigates the thermal-hydraulic performance of microchannel heat sinks as a function of flow channel geometry and orientation at operating conditions representative of electronics cooling applications. Three different experimental test sections, subject to non-uniform heat flux boundary conditions, were investigated. Two of the test sections contained parallel arrays of rectangular microchannels with a hydraulic diameter of 750 μm and aspect ratios of 1 and 2, respectively. The third test section had a staggered array of diamond shaped micro-pins with a hydraulic diameter, based on the minimum flow area, of 525.2 μm. Data were collected for varying inlet temperature (16⩽Tin⩽50 °C), mass flux (315⩽G⩽1000 kg m−2 s−1), and heat flux (20⩽q″⩽50 W cm−2) at a fixed reduced pressure (PR) of 1.1. A data analysis method using 2-D and 3-D heat transfer models of the test sections was used to calculate the average heat transfer coefficients for each experimental condition. Additionally, a pressure drop model was developed to resolve the total measured pressure drop into its components. The results of this study indicate that the turbulent convective heat transfer was independent of orientation (top versus bottom heating) for square microchannel (aspect ratio = 1) for the conditions investigated. Increasing the channel aspect ratio from 1 to 2 led to an enhancement in thermal transport. Finally, the heat transfer performance of the staggered pin array flow geometry was superior to the rectangular channels, but this enhancement in heat transfer was commensurate with the increase in pressure drop. Based on these results, this paper concludes with general design recommendations for those considering the early adoption of supercritical carbon dioxide for thermal management applications." @default.
- W2989002859 created "2019-11-22" @default.
- W2989002859 creator A5015095811 @default.
- W2989002859 creator A5028464089 @default.
- W2989002859 creator A5035327433 @default.
- W2989002859 date "2020-04-01" @default.
- W2989002859 modified "2023-10-18" @default.
- W2989002859 title "Geometry and orientation effects in non-uniformly heated microchannel heat exchangers using supercritical carbon dioxide" @default.
- W2989002859 cites W1967614102 @default.
- W2989002859 cites W1981112731 @default.
- W2989002859 cites W1985482786 @default.
- W2989002859 cites W1986088541 @default.
- W2989002859 cites W1988420433 @default.
- W2989002859 cites W2008197763 @default.
- W2989002859 cites W2009457110 @default.
- W2989002859 cites W2009777300 @default.
- W2989002859 cites W2024606698 @default.
- W2989002859 cites W2033714454 @default.
- W2989002859 cites W2037883029 @default.
- W2989002859 cites W2051740280 @default.
- W2989002859 cites W2055307049 @default.
- W2989002859 cites W2061824636 @default.
- W2989002859 cites W2079492062 @default.
- W2989002859 cites W2089745930 @default.
- W2989002859 cites W2089984638 @default.
- W2989002859 cites W2092260588 @default.
- W2989002859 cites W2097256556 @default.
- W2989002859 cites W2099807199 @default.
- W2989002859 cites W2111933595 @default.
- W2989002859 cites W2126249528 @default.
- W2989002859 cites W2130550265 @default.
- W2989002859 cites W2151450119 @default.
- W2989002859 cites W2168085823 @default.
- W2989002859 cites W2196165975 @default.
- W2989002859 cites W2261078585 @default.
- W2989002859 cites W2318640001 @default.
- W2989002859 cites W2467084760 @default.
- W2989002859 cites W2611168410 @default.
- W2989002859 cites W2618541864 @default.
- W2989002859 cites W2767859692 @default.
- W2989002859 cites W2776256890 @default.
- W2989002859 cites W2898472257 @default.
- W2989002859 cites W2962847674 @default.
- W2989002859 cites W2977220289 @default.
- W2989002859 doi "https://doi.org/10.1016/j.expthermflusci.2019.109979" @default.
- W2989002859 hasPublicationYear "2020" @default.
- W2989002859 type Work @default.
- W2989002859 sameAs 2989002859 @default.
- W2989002859 citedByCount "14" @default.
- W2989002859 countsByYear W29890028592020 @default.
- W2989002859 countsByYear W29890028592021 @default.
- W2989002859 countsByYear W29890028592022 @default.
- W2989002859 countsByYear W29890028592023 @default.
- W2989002859 crossrefType "journal-article" @default.
- W2989002859 hasAuthorship W2989002859A5015095811 @default.
- W2989002859 hasAuthorship W2989002859A5028464089 @default.
- W2989002859 hasAuthorship W2989002859A5035327433 @default.
- W2989002859 hasBestOaLocation W29890028591 @default.
- W2989002859 hasConcept C114088122 @default.
- W2989002859 hasConcept C118227150 @default.
- W2989002859 hasConcept C121332964 @default.
- W2989002859 hasConcept C159188206 @default.
- W2989002859 hasConcept C16644385 @default.
- W2989002859 hasConcept C167131557 @default.
- W2989002859 hasConcept C171250308 @default.
- W2989002859 hasConcept C182748727 @default.
- W2989002859 hasConcept C186937647 @default.
- W2989002859 hasConcept C192562407 @default.
- W2989002859 hasConcept C196558001 @default.
- W2989002859 hasConcept C29700514 @default.
- W2989002859 hasConcept C41231900 @default.
- W2989002859 hasConcept C50517652 @default.
- W2989002859 hasConcept C57879066 @default.
- W2989002859 hasConcept C63662833 @default.
- W2989002859 hasConcept C97355855 @default.
- W2989002859 hasConceptScore W2989002859C114088122 @default.
- W2989002859 hasConceptScore W2989002859C118227150 @default.
- W2989002859 hasConceptScore W2989002859C121332964 @default.
- W2989002859 hasConceptScore W2989002859C159188206 @default.
- W2989002859 hasConceptScore W2989002859C16644385 @default.
- W2989002859 hasConceptScore W2989002859C167131557 @default.
- W2989002859 hasConceptScore W2989002859C171250308 @default.
- W2989002859 hasConceptScore W2989002859C182748727 @default.
- W2989002859 hasConceptScore W2989002859C186937647 @default.
- W2989002859 hasConceptScore W2989002859C192562407 @default.
- W2989002859 hasConceptScore W2989002859C196558001 @default.
- W2989002859 hasConceptScore W2989002859C29700514 @default.
- W2989002859 hasConceptScore W2989002859C41231900 @default.
- W2989002859 hasConceptScore W2989002859C50517652 @default.
- W2989002859 hasConceptScore W2989002859C57879066 @default.
- W2989002859 hasConceptScore W2989002859C63662833 @default.
- W2989002859 hasConceptScore W2989002859C97355855 @default.
- W2989002859 hasFunder F4320306076 @default.
- W2989002859 hasLocation W29890028591 @default.
- W2989002859 hasOpenAccess W2989002859 @default.
- W2989002859 hasPrimaryLocation W29890028591 @default.
- W2989002859 hasRelatedWork W2087046668 @default.
- W2989002859 hasRelatedWork W2555369888 @default.