Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989003622> ?p ?o ?g. }
- W2989003622 endingPage "436" @default.
- W2989003622 startingPage "422" @default.
- W2989003622 abstract "Objective Suicide prevention is a major priority in Native American communities. We used machine learning with community‐based suicide surveillance data to better identify those most at risk. Method This study leverages data from the Celebrating Life program operated by the White Mountain Apache Tribe in Arizona and in partnership with Johns Hopkins University. We examined N = 2,390 individuals with a validated suicide‐related event between 2006 and 2017. Predictors included 73 variables (e.g., demographics, educational history, past mental health, and substance use). The outcome was suicide attempt 6, 12, and 24 months after an initial event. We tested four algorithmic approaches using cross‐validation. Results Area under the curves ranged from AUC = 0.81 (95% CI ± 0.08) for the decision tree classifiers to AUC = 0.87 (95% CI ± 0.04) for the ridge regression, results that were considerably higher than a past suicide attempt (AUC = 0.57; 95% CI ± 0.08). Selecting a cutoff value based on risk concentration plots yielded 0.88 sensitivity, 0.72 specificity, and a positive predictive value of 0.12 for detecting an attempt 24 months postindex event. Conclusion These models substantially improved our ability to determine who was most at risk in this community. Further work is needed including developing clinical guidance and external validation." @default.
- W2989003622 created "2019-11-22" @default.
- W2989003622 creator A5009543525 @default.
- W2989003622 creator A5047641355 @default.
- W2989003622 creator A5060075254 @default.
- W2989003622 creator A5064356374 @default.
- W2989003622 creator A5076423816 @default.
- W2989003622 creator A5078497297 @default.
- W2989003622 date "2019-11-06" @default.
- W2989003622 modified "2023-09-27" @default.
- W2989003622 title "Reaching Those at Highest Risk for Suicide: Development of a Model Using Machine Learning Methods for use With Native American Communities" @default.
- W2989003622 cites W1971654961 @default.
- W2989003622 cites W1987065552 @default.
- W2989003622 cites W1987701777 @default.
- W2989003622 cites W2019694480 @default.
- W2989003622 cites W2020377876 @default.
- W2989003622 cites W2047946801 @default.
- W2989003622 cites W2064042779 @default.
- W2989003622 cites W2074692990 @default.
- W2989003622 cites W2097767756 @default.
- W2989003622 cites W2111773767 @default.
- W2989003622 cites W2116431337 @default.
- W2989003622 cites W2123409929 @default.
- W2989003622 cites W2130248151 @default.
- W2989003622 cites W2131814362 @default.
- W2989003622 cites W2151724288 @default.
- W2989003622 cites W2226243673 @default.
- W2989003622 cites W2318246696 @default.
- W2989003622 cites W2329030766 @default.
- W2989003622 cites W2398905989 @default.
- W2989003622 cites W2419443498 @default.
- W2989003622 cites W2500707965 @default.
- W2989003622 cites W2525984666 @default.
- W2989003622 cites W2531445942 @default.
- W2989003622 cites W2554980225 @default.
- W2989003622 cites W2596790840 @default.
- W2989003622 cites W2604834158 @default.
- W2989003622 cites W2605512411 @default.
- W2989003622 cites W2725461439 @default.
- W2989003622 cites W2801632865 @default.
- W2989003622 cites W2804266670 @default.
- W2989003622 cites W2897748714 @default.
- W2989003622 cites W2902802452 @default.
- W2989003622 cites W2906797451 @default.
- W2989003622 cites W2921616123 @default.
- W2989003622 cites W2934399013 @default.
- W2989003622 cites W2943506793 @default.
- W2989003622 cites W2957791592 @default.
- W2989003622 cites W4211262802 @default.
- W2989003622 cites W4299955612 @default.
- W2989003622 doi "https://doi.org/10.1111/sltb.12598" @default.
- W2989003622 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7148171" @default.
- W2989003622 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31692064" @default.
- W2989003622 hasPublicationYear "2019" @default.
- W2989003622 type Work @default.
- W2989003622 sameAs 2989003622 @default.
- W2989003622 citedByCount "12" @default.
- W2989003622 countsByYear W29890036222020 @default.
- W2989003622 countsByYear W29890036222021 @default.
- W2989003622 countsByYear W29890036222022 @default.
- W2989003622 countsByYear W29890036222023 @default.
- W2989003622 crossrefType "journal-article" @default.
- W2989003622 hasAuthorship W2989003622A5009543525 @default.
- W2989003622 hasAuthorship W2989003622A5047641355 @default.
- W2989003622 hasAuthorship W2989003622A5060075254 @default.
- W2989003622 hasAuthorship W2989003622A5064356374 @default.
- W2989003622 hasAuthorship W2989003622A5076423816 @default.
- W2989003622 hasAuthorship W2989003622A5078497297 @default.
- W2989003622 hasBestOaLocation W29890036222 @default.
- W2989003622 hasConcept C118552586 @default.
- W2989003622 hasConcept C119857082 @default.
- W2989003622 hasConcept C126322002 @default.
- W2989003622 hasConcept C134362201 @default.
- W2989003622 hasConcept C144024400 @default.
- W2989003622 hasConcept C149923435 @default.
- W2989003622 hasConcept C151956035 @default.
- W2989003622 hasConcept C15744967 @default.
- W2989003622 hasConcept C190385971 @default.
- W2989003622 hasConcept C2780842732 @default.
- W2989003622 hasConcept C3017944768 @default.
- W2989003622 hasConcept C41008148 @default.
- W2989003622 hasConcept C526869908 @default.
- W2989003622 hasConcept C71924100 @default.
- W2989003622 hasConcept C74909509 @default.
- W2989003622 hasConcept C84525736 @default.
- W2989003622 hasConcept C99454951 @default.
- W2989003622 hasConceptScore W2989003622C118552586 @default.
- W2989003622 hasConceptScore W2989003622C119857082 @default.
- W2989003622 hasConceptScore W2989003622C126322002 @default.
- W2989003622 hasConceptScore W2989003622C134362201 @default.
- W2989003622 hasConceptScore W2989003622C144024400 @default.
- W2989003622 hasConceptScore W2989003622C149923435 @default.
- W2989003622 hasConceptScore W2989003622C151956035 @default.
- W2989003622 hasConceptScore W2989003622C15744967 @default.
- W2989003622 hasConceptScore W2989003622C190385971 @default.
- W2989003622 hasConceptScore W2989003622C2780842732 @default.
- W2989003622 hasConceptScore W2989003622C3017944768 @default.
- W2989003622 hasConceptScore W2989003622C41008148 @default.