Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989035595> ?p ?o ?g. }
- W2989035595 endingPage "117072" @default.
- W2989035595 startingPage "117072" @default.
- W2989035595 abstract "Abstract An understanding of the growth in surface concentration of ozone and its adverse health effects are important for environmental departments to make sensible decisions for future. Our hybrid model CEEMD+CRJ+MLR is the first attempt to improve CRJ in the field of air pollution prediction and ozone forecasting. For this novel framework, CEEMD has been adopted to decompose original MDA8_O3 history into several sub-series. After that, for each IMF, CRJ is used to extract time-series features. These time-series features are fed into appropriate machine learning methods for prediction. In addition to that, residual is also predicted through normal methods. A model, which is trained with data from 1 May 2014 to 31 May 2017, is validated with data from 1 June 2017 to 30 May 2018, obtained from four stations of Beijing, China. The hybrid model has input variables which are combined with related pollutants, meteorological forecasts and UV index, and predict maximum daily 8-h average ozone (MDA8_O3) concentration in different time intervals. Our experimental results show that the CEEMD+CRJ+MLR model exhibits the best performance compared with other benchmark models generally. For four stations, IA, MAE, RMSE and MAPE average of +1 (forecasting 1 day in advance) are 0.9763, 12.84, 17.81 and 18.5% respectively and of +2 are 0.9679, 15.17, 20.15 and 23.86% respectively. Especially in the case of forecasting heavy ozone concentration (Level III), a critical issue in air pollution predictions, the classification rate of our hybrid model has improved from 29.4% (for CRJ) to 83.4% in +1 and from 38% (for CRJ) to 73% in +2. For long time forecasting, the CEEMD+CRJ+MLR also shows its outstanding performance in whole levels and level III ozone concentration. Our hybrid model, with accurate and stable results, is highly effective for MDA8_O3 concentration prediction and can efficiently be applied in other regions." @default.
- W2989035595 created "2019-11-22" @default.
- W2989035595 creator A5011859450 @default.
- W2989035595 creator A5041032294 @default.
- W2989035595 creator A5050530136 @default.
- W2989035595 creator A5051715347 @default.
- W2989035595 creator A5055250395 @default.
- W2989035595 creator A5077818752 @default.
- W2989035595 creator A5091910793 @default.
- W2989035595 date "2020-01-01" @default.
- W2989035595 modified "2023-09-24" @default.
- W2989035595 title "A novel framework for daily forecasting of ozone mass concentrations based on cycle reservoir with regular jumps neural networks" @default.
- W2989035595 cites W1661370443 @default.
- W2989035595 cites W1689711448 @default.
- W2989035595 cites W1964625810 @default.
- W2989035595 cites W1966313220 @default.
- W2989035595 cites W1968015368 @default.
- W2989035595 cites W1973048907 @default.
- W2989035595 cites W1984470640 @default.
- W2989035595 cites W1990427034 @default.
- W2989035595 cites W1991041654 @default.
- W2989035595 cites W1993071261 @default.
- W2989035595 cites W2002527279 @default.
- W2989035595 cites W2005160638 @default.
- W2989035595 cites W2007221293 @default.
- W2989035595 cites W2008641894 @default.
- W2989035595 cites W2021350494 @default.
- W2989035595 cites W2024510125 @default.
- W2989035595 cites W2030119202 @default.
- W2989035595 cites W2030132082 @default.
- W2989035595 cites W2032803487 @default.
- W2989035595 cites W2039544397 @default.
- W2989035595 cites W2040291612 @default.
- W2989035595 cites W2048060899 @default.
- W2989035595 cites W2061614887 @default.
- W2989035595 cites W2063572932 @default.
- W2989035595 cites W2063602828 @default.
- W2989035595 cites W2064675550 @default.
- W2989035595 cites W2070261558 @default.
- W2989035595 cites W2076485554 @default.
- W2989035595 cites W2083441060 @default.
- W2989035595 cites W2090460218 @default.
- W2989035595 cites W2102093423 @default.
- W2989035595 cites W2110485445 @default.
- W2989035595 cites W2118706537 @default.
- W2989035595 cites W2120390927 @default.
- W2989035595 cites W2125790506 @default.
- W2989035595 cites W2130042267 @default.
- W2989035595 cites W2159639772 @default.
- W2989035595 cites W2167317726 @default.
- W2989035595 cites W2168658532 @default.
- W2989035595 cites W2171865010 @default.
- W2989035595 cites W2173251738 @default.
- W2989035595 cites W2254917760 @default.
- W2989035595 cites W2331700789 @default.
- W2989035595 cites W2340400090 @default.
- W2989035595 cites W2529533245 @default.
- W2989035595 cites W2566512888 @default.
- W2989035595 cites W2585032486 @default.
- W2989035595 cites W2605508894 @default.
- W2989035595 cites W2625284205 @default.
- W2989035595 cites W2729912483 @default.
- W2989035595 cites W2767085346 @default.
- W2989035595 cites W2790570673 @default.
- W2989035595 cites W2795125903 @default.
- W2989035595 cites W2810586154 @default.
- W2989035595 cites W2812669263 @default.
- W2989035595 cites W2885309195 @default.
- W2989035595 cites W2897625161 @default.
- W2989035595 cites W2903279738 @default.
- W2989035595 doi "https://doi.org/10.1016/j.atmosenv.2019.117072" @default.
- W2989035595 hasPublicationYear "2020" @default.
- W2989035595 type Work @default.
- W2989035595 sameAs 2989035595 @default.
- W2989035595 citedByCount "24" @default.
- W2989035595 countsByYear W29890355952020 @default.
- W2989035595 countsByYear W29890355952021 @default.
- W2989035595 countsByYear W29890355952022 @default.
- W2989035595 countsByYear W29890355952023 @default.
- W2989035595 crossrefType "journal-article" @default.
- W2989035595 hasAuthorship W2989035595A5011859450 @default.
- W2989035595 hasAuthorship W2989035595A5041032294 @default.
- W2989035595 hasAuthorship W2989035595A5050530136 @default.
- W2989035595 hasAuthorship W2989035595A5051715347 @default.
- W2989035595 hasAuthorship W2989035595A5055250395 @default.
- W2989035595 hasAuthorship W2989035595A5077818752 @default.
- W2989035595 hasAuthorship W2989035595A5091910793 @default.
- W2989035595 hasConcept C153294291 @default.
- W2989035595 hasConcept C154945302 @default.
- W2989035595 hasConcept C205649164 @default.
- W2989035595 hasConcept C39432304 @default.
- W2989035595 hasConcept C41008148 @default.
- W2989035595 hasConcept C50644808 @default.
- W2989035595 hasConcept C508106653 @default.
- W2989035595 hasConceptScore W2989035595C153294291 @default.
- W2989035595 hasConceptScore W2989035595C154945302 @default.
- W2989035595 hasConceptScore W2989035595C205649164 @default.
- W2989035595 hasConceptScore W2989035595C39432304 @default.