Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989063747> ?p ?o ?g. }
- W2989063747 endingPage "201" @default.
- W2989063747 startingPage "175" @default.
- W2989063747 abstract "Disease prediction has a vital role in health informatics. The early detection of diseases assists in taking preventive steps and more functional treatment. Incorporating intelligent classification models and data analysis methods has intrinsic impact on converting such trivial, row data into worthy useful knowledge. Due to the explosion in computational and medical technologies, we observe an explosion in the volume of health- and medical-related data. Medical datasets are high-dimensional datasets, which make the process of building a classification model that searches for optimal set of features a hard, yet more challenging task. Hence, this chapter introduces a fundamental class of optimization known as the multi-objective evolutionary algorithms (MOEA) for optimization, which handles the feature selection for classification in medical applications. The chapter presents an introduction to multi-objective optimization and their related mathematical models. Furthermore, this chapter investigates the utilization of a well-regarded multi-objective particle swarm optimization (MOPSO) as wrapper-based feature selection method, in order to detect the presence or absence of different types of diseases. Therefore, the performance of MOPSO and its behavior are examined by comparing it with other well-regarded MOEAs on several medical datasets. The experimental results on most of the medical datasets show that the MOPSO algorithm outperforms other algorithms such as non-dominated sorting genetic algorithm (NSGA-II) and multi-objective evolutionary algorithm based on decomposition (MOEA/D) in terms of classification accuracy and minimum number of features." @default.
- W2989063747 created "2019-11-22" @default.
- W2989063747 creator A5020371301 @default.
- W2989063747 creator A5023882029 @default.
- W2989063747 creator A5048560390 @default.
- W2989063747 creator A5091500375 @default.
- W2989063747 date "2019-11-12" @default.
- W2989063747 modified "2023-10-18" @default.
- W2989063747 title "Multi-objective Particle Swarm Optimization: Theory, Literature Review, and Application in Feature Selection for Medical Diagnosis" @default.
- W2989063747 cites W1659842140 @default.
- W2989063747 cites W1905847227 @default.
- W2989063747 cites W1957430778 @default.
- W2989063747 cites W1966701961 @default.
- W2989063747 cites W1976070030 @default.
- W2989063747 cites W1993530334 @default.
- W2989063747 cites W2000621750 @default.
- W2989063747 cites W2020762340 @default.
- W2989063747 cites W2038200226 @default.
- W2989063747 cites W2040884411 @default.
- W2989063747 cites W2055849881 @default.
- W2989063747 cites W2056431113 @default.
- W2989063747 cites W2083449640 @default.
- W2989063747 cites W2087684630 @default.
- W2989063747 cites W2100534701 @default.
- W2989063747 cites W2109363337 @default.
- W2989063747 cites W2109364787 @default.
- W2989063747 cites W2116661285 @default.
- W2989063747 cites W2125213524 @default.
- W2989063747 cites W2128804044 @default.
- W2989063747 cites W2143381319 @default.
- W2989063747 cites W2167159964 @default.
- W2989063747 cites W2174096823 @default.
- W2989063747 cites W2436634098 @default.
- W2989063747 cites W2481453975 @default.
- W2989063747 cites W2521164685 @default.
- W2989063747 cites W2540412184 @default.
- W2989063747 cites W2561216733 @default.
- W2989063747 cites W2564781577 @default.
- W2989063747 cites W2565818448 @default.
- W2989063747 cites W2611370172 @default.
- W2989063747 cites W2724365251 @default.
- W2989063747 cites W2742961367 @default.
- W2989063747 cites W2770073247 @default.
- W2989063747 cites W2776226778 @default.
- W2989063747 cites W2784834174 @default.
- W2989063747 cites W2789338990 @default.
- W2989063747 cites W2796319428 @default.
- W2989063747 cites W2801536506 @default.
- W2989063747 cites W2883013658 @default.
- W2989063747 cites W2885770227 @default.
- W2989063747 cites W2892079407 @default.
- W2989063747 cites W2893960396 @default.
- W2989063747 cites W2896013864 @default.
- W2989063747 cites W2896761810 @default.
- W2989063747 cites W2898813896 @default.
- W2989063747 cites W2907227550 @default.
- W2989063747 cites W2909848722 @default.
- W2989063747 cites W2912608878 @default.
- W2989063747 cites W2929904983 @default.
- W2989063747 cites W4240266056 @default.
- W2989063747 cites W429766147 @default.
- W2989063747 doi "https://doi.org/10.1007/978-981-32-9990-0_9" @default.
- W2989063747 hasPublicationYear "2019" @default.
- W2989063747 type Work @default.
- W2989063747 sameAs 2989063747 @default.
- W2989063747 citedByCount "16" @default.
- W2989063747 countsByYear W29890637472020 @default.
- W2989063747 countsByYear W29890637472021 @default.
- W2989063747 countsByYear W29890637472022 @default.
- W2989063747 countsByYear W29890637472023 @default.
- W2989063747 crossrefType "book-chapter" @default.
- W2989063747 hasAuthorship W2989063747A5020371301 @default.
- W2989063747 hasAuthorship W2989063747A5023882029 @default.
- W2989063747 hasAuthorship W2989063747A5048560390 @default.
- W2989063747 hasAuthorship W2989063747A5091500375 @default.
- W2989063747 hasConcept C119857082 @default.
- W2989063747 hasConcept C122357587 @default.
- W2989063747 hasConcept C138885662 @default.
- W2989063747 hasConcept C148483581 @default.
- W2989063747 hasConcept C154945302 @default.
- W2989063747 hasConcept C2776401178 @default.
- W2989063747 hasConcept C41008148 @default.
- W2989063747 hasConcept C41895202 @default.
- W2989063747 hasConcept C81917197 @default.
- W2989063747 hasConcept C85617194 @default.
- W2989063747 hasConceptScore W2989063747C119857082 @default.
- W2989063747 hasConceptScore W2989063747C122357587 @default.
- W2989063747 hasConceptScore W2989063747C138885662 @default.
- W2989063747 hasConceptScore W2989063747C148483581 @default.
- W2989063747 hasConceptScore W2989063747C154945302 @default.
- W2989063747 hasConceptScore W2989063747C2776401178 @default.
- W2989063747 hasConceptScore W2989063747C41008148 @default.
- W2989063747 hasConceptScore W2989063747C41895202 @default.
- W2989063747 hasConceptScore W2989063747C81917197 @default.
- W2989063747 hasConceptScore W2989063747C85617194 @default.
- W2989063747 hasLocation W29890637471 @default.
- W2989063747 hasOpenAccess W2989063747 @default.
- W2989063747 hasPrimaryLocation W29890637471 @default.