Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989078045> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2989078045 endingPage "1501" @default.
- W2989078045 startingPage "1493" @default.
- W2989078045 abstract "A system of road transport infrastructure is one of the key components of ensuring a population life and a normal functioning of production processes, which consist of geographically distributed interactions. Road traffic accidents’ statistics in Russia shows that the problem of road safety management remains very crucial. The use of big data and machine learning approaches is effective in developing traffic accident prediction models. Such models can significantly reduce the number of accidents according to the international experience of road safety management. The paper analyzes the possibility for the development of the road traffic accidents’ prediction model using the data provided by local police in Russia. An example of using the collected data for the development of road accident severity prediction model and analyzing which features have a huge impact on the accident severity has been provided." @default.
- W2989078045 created "2019-11-22" @default.
- W2989078045 creator A5029684074 @default.
- W2989078045 creator A5051975957 @default.
- W2989078045 creator A5064547022 @default.
- W2989078045 date "2019-11-15" @default.
- W2989078045 modified "2023-09-26" @default.
- W2989078045 title "Prediction of Road Accidents’ Severity on Russian Roads Using Machine Learning Techniques" @default.
- W2989078045 cites W2059425182 @default.
- W2989078045 cites W2127741730 @default.
- W2989078045 cites W2240386673 @default.
- W2989078045 cites W2327322625 @default.
- W2989078045 cites W2558272009 @default.
- W2989078045 cites W2562319768 @default.
- W2989078045 cites W2606799063 @default.
- W2989078045 doi "https://doi.org/10.1007/978-3-030-22063-1_157" @default.
- W2989078045 hasPublicationYear "2019" @default.
- W2989078045 type Work @default.
- W2989078045 sameAs 2989078045 @default.
- W2989078045 citedByCount "4" @default.
- W2989078045 countsByYear W29890780452020 @default.
- W2989078045 countsByYear W29890780452022 @default.
- W2989078045 countsByYear W29890780452023 @default.
- W2989078045 crossrefType "book-chapter" @default.
- W2989078045 hasAuthorship W2989078045A5029684074 @default.
- W2989078045 hasAuthorship W2989078045A5051975957 @default.
- W2989078045 hasAuthorship W2989078045A5064547022 @default.
- W2989078045 hasConcept C127413603 @default.
- W2989078045 hasConcept C22212356 @default.
- W2989078045 hasConcept C41008148 @default.
- W2989078045 hasConcept C77595967 @default.
- W2989078045 hasConceptScore W2989078045C127413603 @default.
- W2989078045 hasConceptScore W2989078045C22212356 @default.
- W2989078045 hasConceptScore W2989078045C41008148 @default.
- W2989078045 hasConceptScore W2989078045C77595967 @default.
- W2989078045 hasLocation W29890780451 @default.
- W2989078045 hasOpenAccess W2989078045 @default.
- W2989078045 hasPrimaryLocation W29890780451 @default.
- W2989078045 hasRelatedWork W1503285415 @default.
- W2989078045 hasRelatedWork W1516455402 @default.
- W2989078045 hasRelatedWork W1541087157 @default.
- W2989078045 hasRelatedWork W2244752860 @default.
- W2989078045 hasRelatedWork W2389528444 @default.
- W2989078045 hasRelatedWork W2899084033 @default.
- W2989078045 hasRelatedWork W300043372 @default.
- W2989078045 hasRelatedWork W3146548853 @default.
- W2989078045 hasRelatedWork W605816536 @default.
- W2989078045 hasRelatedWork W617987602 @default.
- W2989078045 isParatext "false" @default.
- W2989078045 isRetracted "false" @default.
- W2989078045 magId "2989078045" @default.
- W2989078045 workType "book-chapter" @default.