Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989184171> ?p ?o ?g. }
- W2989184171 endingPage "3832" @default.
- W2989184171 startingPage "3818" @default.
- W2989184171 abstract "Of late, there are many studies on the robust discriminant analysis, which adopt L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norm as the distance metric, but their results are not robust enough to gain universal acceptance. To overcome this problem, the authors of this article present a nonpeaked discriminant analysis (NPDA) technique, in which cutting L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norm is adopted as the distance metric. As this kind of norm can better eliminate heavy outliers in learning models, the proposed algorithm is expected to be stronger in performing feature extraction tasks for data representation than the existing robust discriminant analysis techniques, which are based on the L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norm distance metric. The authors also present a comprehensive analysis to show that cutting L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norm distance can be computed equally well, using the difference between two special convex functions. Against this background, an efficient iterative algorithm is designed for the optimization of the proposed objective. Theoretical proofs on the convergence of the algorithm are also presented. Theoretical insights and effectiveness of the proposed method are validated by experimental tests on several real data sets." @default.
- W2989184171 created "2019-11-22" @default.
- W2989184171 creator A5017096005 @default.
- W2989184171 creator A5037953083 @default.
- W2989184171 creator A5039671101 @default.
- W2989184171 creator A5053102526 @default.
- W2989184171 creator A5073078602 @default.
- W2989184171 creator A5087729203 @default.
- W2989184171 date "2019-12-01" @default.
- W2989184171 modified "2023-10-14" @default.
- W2989184171 title "Nonpeaked Discriminant Analysis for Data Representation" @default.
- W2989184171 cites W1166921479 @default.
- W2989184171 cites W1979714579 @default.
- W2989184171 cites W1992633833 @default.
- W2989184171 cites W2002427601 @default.
- W2989184171 cites W2005347517 @default.
- W2989184171 cites W2008277111 @default.
- W2989184171 cites W2042970394 @default.
- W2989184171 cites W2053090063 @default.
- W2989184171 cites W2056935845 @default.
- W2989184171 cites W2076019763 @default.
- W2989184171 cites W2098004870 @default.
- W2989184171 cites W2100495367 @default.
- W2989184171 cites W2117553576 @default.
- W2989184171 cites W2125874614 @default.
- W2989184171 cites W2133538634 @default.
- W2989184171 cites W2135081536 @default.
- W2989184171 cites W2138451337 @default.
- W2989184171 cites W2145862222 @default.
- W2989184171 cites W2151416140 @default.
- W2989184171 cites W2157032359 @default.
- W2989184171 cites W2163376981 @default.
- W2989184171 cites W2166693468 @default.
- W2989184171 cites W2240559667 @default.
- W2989184171 cites W2297991835 @default.
- W2989184171 cites W2337719340 @default.
- W2989184171 cites W2343830850 @default.
- W2989184171 cites W2428936319 @default.
- W2989184171 cites W2464913182 @default.
- W2989184171 cites W2466114631 @default.
- W2989184171 cites W2472885885 @default.
- W2989184171 cites W2516176725 @default.
- W2989184171 cites W2543969232 @default.
- W2989184171 cites W2565703388 @default.
- W2989184171 cites W2607323999 @default.
- W2989184171 cites W2608501919 @default.
- W2989184171 cites W2699934687 @default.
- W2989184171 cites W2742001166 @default.
- W2989184171 cites W2754803257 @default.
- W2989184171 cites W2761818166 @default.
- W2989184171 cites W2769417998 @default.
- W2989184171 cites W2793544474 @default.
- W2989184171 cites W2794268568 @default.
- W2989184171 cites W2807548733 @default.
- W2989184171 cites W2889400998 @default.
- W2989184171 cites W3023553797 @default.
- W2989184171 cites W3148981562 @default.
- W2989184171 cites W4250589301 @default.
- W2989184171 doi "https://doi.org/10.1109/tnnls.2019.2944869" @default.
- W2989184171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31725389" @default.
- W2989184171 hasPublicationYear "2019" @default.
- W2989184171 type Work @default.
- W2989184171 sameAs 2989184171 @default.
- W2989184171 citedByCount "93" @default.
- W2989184171 countsByYear W29891841712020 @default.
- W2989184171 countsByYear W29891841712021 @default.
- W2989184171 countsByYear W29891841712022 @default.
- W2989184171 countsByYear W29891841712023 @default.
- W2989184171 crossrefType "journal-article" @default.
- W2989184171 hasAuthorship W2989184171A5017096005 @default.
- W2989184171 hasAuthorship W2989184171A5037953083 @default.
- W2989184171 hasAuthorship W2989184171A5039671101 @default.
- W2989184171 hasAuthorship W2989184171A5053102526 @default.
- W2989184171 hasAuthorship W2989184171A5073078602 @default.
- W2989184171 hasAuthorship W2989184171A5087729203 @default.
- W2989184171 hasConcept C11413529 @default.
- W2989184171 hasConcept C154945302 @default.
- W2989184171 hasConcept C162324750 @default.
- W2989184171 hasConcept C176217482 @default.
- W2989184171 hasConcept C17744445 @default.
- W2989184171 hasConcept C191795146 @default.
- W2989184171 hasConcept C199539241 @default.
- W2989184171 hasConcept C21547014 @default.
- W2989184171 hasConcept C33923547 @default.
- W2989184171 hasConcept C41008148 @default.
- W2989184171 hasConcept C69738355 @default.
- W2989184171 hasConcept C78397625 @default.
- W2989184171 hasConcept C79337645 @default.
- W2989184171 hasConceptScore W2989184171C11413529 @default.
- W2989184171 hasConceptScore W2989184171C154945302 @default.
- W2989184171 hasConceptScore W2989184171C162324750 @default.
- W2989184171 hasConceptScore W2989184171C176217482 @default.
- W2989184171 hasConceptScore W2989184171C17744445 @default.
- W2989184171 hasConceptScore W2989184171C191795146 @default.
- W2989184171 hasConceptScore W2989184171C199539241 @default.
- W2989184171 hasConceptScore W2989184171C21547014 @default.
- W2989184171 hasConceptScore W2989184171C33923547 @default.
- W2989184171 hasConceptScore W2989184171C41008148 @default.