Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989199771> ?p ?o ?g. }
- W2989199771 endingPage "2579" @default.
- W2989199771 startingPage "2579" @default.
- W2989199771 abstract "Management and control operations are crucial for preventing forest fires, especially in Mediterranean forest areas with dry climatic periods. One of them is prescribed fires, in which the biomass fuel present in the controlled plot area must be accurately estimated. The most used methods for estimating biomass are time-consuming and demand too much manpower. Unmanned aerial vehicles (UAVs) carrying multispectral sensors can be used to carry out accurate indirect measurements of terrain and vegetation morphology and their radiometric characteristics. Based on the UAV-photogrammetric project products, four estimators of phytovolume were compared in a Mediterranean forest area, all obtained using the difference between a digital surface model (DSM) and a digital terrain model (DTM). The DSM was derived from a UAV-photogrammetric project based on the structure from a motion algorithm. Four different methods for obtaining a DTM were used based on an unclassified dense point cloud produced through a UAV-photogrammetric project (FFU), an unsupervised classified dense point cloud (FFC), a multispectral vegetation index (FMI), and a cloth simulation filter (FCS). Qualitative and quantitative comparisons determined the ability of the phytovolume estimators for vegetation detection and occupied volume. The results show that there are no significant differences in surface vegetation detection between all the pairwise possible comparisons of the four estimators at a 95% confidence level, but FMI presented the best kappa value (0.678) in an error matrix analysis with reference data obtained from photointerpretation and supervised classification. Concerning the accuracy of phytovolume estimation, only FFU and FFC presented differences higher than two standard deviations in a pairwise comparison, and FMI presented the best RMSE (12.3 m) when the estimators were compared to 768 observed data points grouped in four 500 m2 sample plots. The FMI was the best phytovolume estimator of the four compared for low vegetation height in a Mediterranean forest. The use of FMI based on UAV data provides accurate phytovolume estimations that can be applied on several environment management activities, including wildfire prevention. Multitemporal phytovolume estimations based on FMI could help to model the forest resources evolution in a very realistic way." @default.
- W2989199771 created "2019-11-22" @default.
- W2989199771 creator A5052861689 @default.
- W2989199771 creator A5053509496 @default.
- W2989199771 creator A5072097994 @default.
- W2989199771 creator A5087940605 @default.
- W2989199771 date "2019-11-03" @default.
- W2989199771 modified "2023-10-06" @default.
- W2989199771 title "A Comparative Analysis of Phytovolume Estimation Methods Based on UAV-Photogrammetry and Multispectral Imagery in a Mediterranean Forest" @default.
- W2989199771 cites W1928585742 @default.
- W2989199771 cites W1970787951 @default.
- W2989199771 cites W1977338552 @default.
- W2989199771 cites W1989401377 @default.
- W2989199771 cites W2000806083 @default.
- W2989199771 cites W2001246420 @default.
- W2989199771 cites W2002730835 @default.
- W2989199771 cites W2004802920 @default.
- W2989199771 cites W2005338124 @default.
- W2989199771 cites W2023928279 @default.
- W2989199771 cites W2027436175 @default.
- W2989199771 cites W2045505889 @default.
- W2989199771 cites W2083347302 @default.
- W2989199771 cites W2114962940 @default.
- W2989199771 cites W2120612314 @default.
- W2989199771 cites W2125217922 @default.
- W2989199771 cites W2129404737 @default.
- W2989199771 cites W2138355206 @default.
- W2989199771 cites W2168481151 @default.
- W2989199771 cites W2172914778 @default.
- W2989199771 cites W2265044587 @default.
- W2989199771 cites W2436494909 @default.
- W2989199771 cites W2492593655 @default.
- W2989199771 cites W2507973586 @default.
- W2989199771 cites W2604358702 @default.
- W2989199771 cites W2618742129 @default.
- W2989199771 cites W2791607395 @default.
- W2989199771 cites W2801157078 @default.
- W2989199771 cites W2801570683 @default.
- W2989199771 cites W2805696215 @default.
- W2989199771 cites W2807083473 @default.
- W2989199771 cites W2887291686 @default.
- W2989199771 cites W2890183925 @default.
- W2989199771 cites W2890995852 @default.
- W2989199771 cites W2921333384 @default.
- W2989199771 cites W2940696663 @default.
- W2989199771 cites W2957496006 @default.
- W2989199771 cites W4232475737 @default.
- W2989199771 doi "https://doi.org/10.3390/rs11212579" @default.
- W2989199771 hasPublicationYear "2019" @default.
- W2989199771 type Work @default.
- W2989199771 sameAs 2989199771 @default.
- W2989199771 citedByCount "7" @default.
- W2989199771 countsByYear W29891997712020 @default.
- W2989199771 countsByYear W29891997712021 @default.
- W2989199771 countsByYear W29891997712022 @default.
- W2989199771 countsByYear W29891997712023 @default.
- W2989199771 crossrefType "journal-article" @default.
- W2989199771 hasAuthorship W2989199771A5052861689 @default.
- W2989199771 hasAuthorship W2989199771A5053509496 @default.
- W2989199771 hasAuthorship W2989199771A5072097994 @default.
- W2989199771 hasAuthorship W2989199771A5087940605 @default.
- W2989199771 hasBestOaLocation W29891997711 @default.
- W2989199771 hasConcept C117455697 @default.
- W2989199771 hasConcept C131979681 @default.
- W2989199771 hasConcept C142724271 @default.
- W2989199771 hasConcept C154945302 @default.
- W2989199771 hasConcept C161840515 @default.
- W2989199771 hasConcept C173163844 @default.
- W2989199771 hasConcept C205649164 @default.
- W2989199771 hasConcept C2775938548 @default.
- W2989199771 hasConcept C2776133958 @default.
- W2989199771 hasConcept C2778102629 @default.
- W2989199771 hasConcept C39432304 @default.
- W2989199771 hasConcept C41008148 @default.
- W2989199771 hasConcept C58640448 @default.
- W2989199771 hasConcept C62649853 @default.
- W2989199771 hasConcept C71924100 @default.
- W2989199771 hasConcept C93692415 @default.
- W2989199771 hasConceptScore W2989199771C117455697 @default.
- W2989199771 hasConceptScore W2989199771C131979681 @default.
- W2989199771 hasConceptScore W2989199771C142724271 @default.
- W2989199771 hasConceptScore W2989199771C154945302 @default.
- W2989199771 hasConceptScore W2989199771C161840515 @default.
- W2989199771 hasConceptScore W2989199771C173163844 @default.
- W2989199771 hasConceptScore W2989199771C205649164 @default.
- W2989199771 hasConceptScore W2989199771C2775938548 @default.
- W2989199771 hasConceptScore W2989199771C2776133958 @default.
- W2989199771 hasConceptScore W2989199771C2778102629 @default.
- W2989199771 hasConceptScore W2989199771C39432304 @default.
- W2989199771 hasConceptScore W2989199771C41008148 @default.
- W2989199771 hasConceptScore W2989199771C58640448 @default.
- W2989199771 hasConceptScore W2989199771C62649853 @default.
- W2989199771 hasConceptScore W2989199771C71924100 @default.
- W2989199771 hasConceptScore W2989199771C93692415 @default.
- W2989199771 hasIssue "21" @default.
- W2989199771 hasLocation W29891997711 @default.
- W2989199771 hasLocation W29891997712 @default.
- W2989199771 hasLocation W29891997713 @default.