Matches in SemOpenAlex for { <https://semopenalex.org/work/W2989219044> ?p ?o ?g. }
- W2989219044 endingPage "415" @default.
- W2989219044 startingPage "403" @default.
- W2989219044 abstract "High warming rates during cryopreservation are crucial and essential for successful vitrification. However, realizing a faster warming rate in low-concentration cryoprotective agents appears to be challenging for conventional warming process through convective heat transfer. Herein, we developed a liquid metal (LM) nanosystem that can act as a spatial source to significantly enhance the warming rates with near-infrared laser irradiation during the warming process. The synthetic Pluronic F127-liquid metal nanoparticles (PLM NPs) displayed multiple performances with uniform particle size, superior photothermal conversion efficiency (52%), repeatable photothermal stability, and low cytotoxicity. Particularly, it is more difficult for the liquid PLM NPs with less surface free energy to form crystal nucleation than other solid NPs such as gold and Fe3O4, which is beneficial for the cooling process during cryopreservation. The viability of human bone marrow-derived mesenchymal stem cells postcryopreservation reached 78±3%, which is threefold higher than that obtained by the conventional warming method (25±6%). Additionally, the cells postcryopreservation maintained their normal attachment, proliferation, surface marker expression, and intact multilineage differentiation properties. Moreover, the results of mouse tails including blood vessel cryopreservation showed a relatively improved intact structure when using PLM NP rewarming compared with the results of conventional warming. The new LM nanosystem provides a universal platform for cryopreservation that is expected to have potential for widespread applications including bioengineering, cell-based medicine, and clinical translation. In this study, we fabricated soft liquid metal nanoparticles with high photothermal conversion efficiency, repeatable photothermal stability, and low cytotoxicity. Particularly, soft liquid metal nanoparticles with less surface free energy and suppression effects of ice formation were first introduced to mediate cryopreservation. Superior ice-crystallization inhibition is achieved as a result of less crystal nucleation and ultrarapid rewarming during the freezing and warming processes of cryopreservation, respectively. Collectively, cryopreservation of human bone marrow stromal cells (HBMSCs) and mouse tails including blood vessels can be successfully performed using this new nanoplatform, showing great potential in the application of soft nanoparticles in cryopreservation." @default.
- W2989219044 created "2019-11-22" @default.
- W2989219044 creator A5005054655 @default.
- W2989219044 creator A5012381236 @default.
- W2989219044 creator A5024339120 @default.
- W2989219044 creator A5024572633 @default.
- W2989219044 creator A5025389738 @default.
- W2989219044 creator A5028321160 @default.
- W2989219044 creator A5079729552 @default.
- W2989219044 date "2020-01-01" @default.
- W2989219044 modified "2023-10-16" @default.
- W2989219044 title "Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation" @default.
- W2989219044 cites W1176872327 @default.
- W2989219044 cites W1955490486 @default.
- W2989219044 cites W1965413255 @default.
- W2989219044 cites W1976648383 @default.
- W2989219044 cites W1988783116 @default.
- W2989219044 cites W2008666768 @default.
- W2989219044 cites W2015482122 @default.
- W2989219044 cites W2021713080 @default.
- W2989219044 cites W2027717982 @default.
- W2989219044 cites W2032740145 @default.
- W2989219044 cites W2033156964 @default.
- W2989219044 cites W2034117820 @default.
- W2989219044 cites W2037372181 @default.
- W2989219044 cites W2048900392 @default.
- W2989219044 cites W2061724345 @default.
- W2989219044 cites W2063470712 @default.
- W2989219044 cites W2073755410 @default.
- W2989219044 cites W2086495884 @default.
- W2989219044 cites W2089641545 @default.
- W2989219044 cites W2093136514 @default.
- W2989219044 cites W2101862080 @default.
- W2989219044 cites W2112392835 @default.
- W2989219044 cites W2156641530 @default.
- W2989219044 cites W2168368278 @default.
- W2989219044 cites W2191460975 @default.
- W2989219044 cites W2288326660 @default.
- W2989219044 cites W2292446759 @default.
- W2989219044 cites W2513407075 @default.
- W2989219044 cites W2559787613 @default.
- W2989219044 cites W2594338905 @default.
- W2989219044 cites W2618330992 @default.
- W2989219044 cites W2735969846 @default.
- W2989219044 cites W2750981121 @default.
- W2989219044 cites W2751039231 @default.
- W2989219044 cites W2768275770 @default.
- W2989219044 cites W2783112779 @default.
- W2989219044 cites W2800055255 @default.
- W2989219044 cites W2800188865 @default.
- W2989219044 cites W2800763840 @default.
- W2989219044 cites W2802070058 @default.
- W2989219044 cites W2895936582 @default.
- W2989219044 cites W2903619668 @default.
- W2989219044 cites W2908045006 @default.
- W2989219044 cites W2921741555 @default.
- W2989219044 cites W2964131808 @default.
- W2989219044 cites W4241137673 @default.
- W2989219044 cites W4243901738 @default.
- W2989219044 cites W577659849 @default.
- W2989219044 cites W2064887644 @default.
- W2989219044 doi "https://doi.org/10.1016/j.actbio.2019.11.023" @default.
- W2989219044 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31734413" @default.
- W2989219044 hasPublicationYear "2020" @default.
- W2989219044 type Work @default.
- W2989219044 sameAs 2989219044 @default.
- W2989219044 citedByCount "34" @default.
- W2989219044 countsByYear W29892190442020 @default.
- W2989219044 countsByYear W29892190442021 @default.
- W2989219044 countsByYear W29892190442022 @default.
- W2989219044 countsByYear W29892190442023 @default.
- W2989219044 crossrefType "journal-article" @default.
- W2989219044 hasAuthorship W2989219044A5005054655 @default.
- W2989219044 hasAuthorship W2989219044A5012381236 @default.
- W2989219044 hasAuthorship W2989219044A5024339120 @default.
- W2989219044 hasAuthorship W2989219044A5024572633 @default.
- W2989219044 hasAuthorship W2989219044A5025389738 @default.
- W2989219044 hasAuthorship W2989219044A5028321160 @default.
- W2989219044 hasAuthorship W2989219044A5079729552 @default.
- W2989219044 hasConcept C12554922 @default.
- W2989219044 hasConcept C136229726 @default.
- W2989219044 hasConcept C155672457 @default.
- W2989219044 hasConcept C16685009 @default.
- W2989219044 hasConcept C171250308 @default.
- W2989219044 hasConcept C179933525 @default.
- W2989219044 hasConcept C182606246 @default.
- W2989219044 hasConcept C191897082 @default.
- W2989219044 hasConcept C192562407 @default.
- W2989219044 hasConcept C196843134 @default.
- W2989219044 hasConcept C2777230088 @default.
- W2989219044 hasConcept C2778022349 @default.
- W2989219044 hasConcept C71924100 @default.
- W2989219044 hasConcept C86803240 @default.
- W2989219044 hasConcept C95444343 @default.
- W2989219044 hasConceptScore W2989219044C12554922 @default.
- W2989219044 hasConceptScore W2989219044C136229726 @default.
- W2989219044 hasConceptScore W2989219044C155672457 @default.
- W2989219044 hasConceptScore W2989219044C16685009 @default.